A New $q$-Heisenberg Algebra (2506.04248v1)
Abstract: This work introduces a novel $q$-$\hbar$ deformation of the Heisenberg algebra, designed to unify and extend several existing $q$-deformed formulations. Starting from the canonical Heisenberg algebra defined by the commutation relation $[\hat{x}, \hat{p}] = i\hbar$ on a Hilbert space \cite{Zettili2009}, we survey a variety of $q$-deformed structures previously proposed by Wess \cite{Wess2000}, Schm\"udgen \cite{Schmudgen1999}, Wess--Schwenk \cite{Wess-Schwenk1992}, Gaddis \cite{Jasson-Gaddis2016}, and others. These frameworks involve position, momentum, and auxiliary operators that satisfy nontrivial commutation rules and algebraic relations incorporating deformation parameters. Our new $q$-$\hbar$ Heisenberg algebra $\mathcal{H}q$ is generated by elements $\hat{x}\alpha$, $\hat{y}\lambda$, and $\hat{p}\beta$ with $\alpha, \lambda, \beta \in {1,2,3}$, and is defined through generalized commutation relations parameterized by real constants $n, m, l$ and three dynamical functions $\Psi(q)$, $\Phi(q)$, and $\Pi(q)$ depending on the deformation parameter $q$ and the generators. By selecting appropriate values for these parameters and functions, our framework recovers several well-known algebras as special cases, including the classical Heisenberg algebra for $q = 1$ and $\Psi = 1$, $\Phi = \Pi = 0$, and various $q$-deformed algebras for $q \neq 1$. The algebraic consistency of these generalizations is demonstrated through a series of explicit examples, and the resulting structures are shown to align with quantum planes \cite{Yuri-Manin2010} and enveloping algebras associated with Lie algebra homomorphisms \cite{Reyes2014a}. This construction offers a flexible and unified formalism for studying quantum deformations, with potential applications in quantum mechanics, noncommutative geometry, and quantum group theory.