Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Maximum A Posteriori Direction-of-Arrival Estimation via Mixed-Integer Semidefinite Programming (2311.03501v2)

Published 6 Nov 2023 in eess.SP

Abstract: In this paper, we consider the maximum a posteriori (MAP) estimation for the multiple measurement vectors (MMV) problem with application to direction-of-arrival (DOA) estimation, which is classically formulated as a regularized least-squares (LS) problem with an $\ell_{2,0}$-norm constraint, and derive an equivalent mixed-integer semidefinite program (MISDP) reformulation. The proposed MISDP reformulation can be exactly solved by a generic MISDP solver using a semidefinite programming (SDP) based branch-and-bound method, which, unlike other nonconvex approaches for the MMV problem, such as the greedy methods and sparse Bayesian learning techniques, provides a solution with an optimality assessment even with early termination. We also present an approximate solution approach based on randomized rounding that yields high-quality feasible solutions of the proposed MISDP reformulation at a practically affordable computation time for problems of extremely large dimensions. Numerical simulations demonstrate the improved error performance of our proposed method in comparison to several popular DOA estimation methods. In particular, compared to the deterministic maximum likelihood (DML) estimator, which is often used as a benchmark, the proposed method applied with the randomized rounding algorithm exhibits a superior estimation performance at a significantly reduced running time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.