Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Generalized integrals and point interactions (2311.03135v1)

Published 6 Nov 2023 in math-ph, math.CA, and math.MP

Abstract: First we recall a method of computing scalar products of eigenfunctions of a Sturm-Liouville operator. This method is then applied to Macdonald and Gegenbauer functions, which are eigenfunctions of the Bessel, resp. Gegenbauer operators. The computed scalar products are well defined only for a limited range of parameters. To extend the obtained formulas to a much larger range of parameters, we introduce the concept of a generalized integral. The (standard as well as generalized) integrals of Macdonald and Gegenbauer functions have important applications to operator theory. Macdonald functions can be used to express the integral kernels of the resolvent (Green functions) of the Laplacian on the Euclidean space in any dimension. Similarly, Gegenbauer functions appear in Green functions of the Laplacian on the sphere and the hyperbolic space. In dimensions 1,2,3 one can perturb these Laplacians with a point potential, obtaining a well defined self-adjoint operator. Standard integrals of Macdonald and Gegenbauer functions appear in the formulas for the corresponding Green functions. In higher dimensions the Laplacian perturbed by point potentials does not exist. However, the corresponding Green function can be generalized to any dimension by using generalized integrals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.