Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The partition algebra and the plethysm coefficients II: ramified plethysm (2311.02721v2)

Published 5 Nov 2023 in math.RT and math.CO

Abstract: The plethysm coefficient $p(\nu, \mu, \lambda)$ is the multiplicity of the Schur function $s_\lambda$ in the plethysm product $s_\nu \circ s_\mu$. In this paper we use Schur--Weyl duality between wreath products of symmetric groups and the ramified partition algebra to interpret an arbitrary plethysm coefficient as the multiplicity of an appropriate composition factor in the restriction of a module for the ramified partition algebra to the partition algebra. This result implies new stability phenomenon for plethysm coefficients when the first parts of $\nu$, $\mu$ and $\lambda$ are all large. In particular, it gives the first positive formula in the case when $\nu$ and $\lambda$ are arbitrary and $\mu$ has one part. Corollaries include new explicit positive formulae and combinatorial interpretations for the plethysm coefficients $p((n-b,b), (m), (mn-r,r))$, and $p((n-b,1b), (m), (mn-r,r))$ when $m$ and $n$ are large.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube