Papers
Topics
Authors
Recent
Search
2000 character limit reached

Factor-guided estimation of large covariance matrix function with conditional functional sparsity

Published 4 Nov 2023 in stat.ME | (2311.02450v1)

Abstract: This paper addresses the fundamental task of estimating covariance matrix functions for high-dimensional functional data/functional time series. We consider two functional factor structures encompassing either functional factors with scalar loadings or scalar factors with functional loadings, and postulate functional sparsity on the covariance of idiosyncratic errors after taking out the common unobserved factors. To facilitate estimation, we rely on the spiked matrix model and its functional generalization, and derive some novel asymptotic identifiability results, based on which we develop DIGIT and FPOET estimators under two functional factor models, respectively. Both estimators involve performing associated eigenanalysis to estimate the covariance of common components, followed by adaptive functional thresholding applied to the residual covariance. We also develop functional information criteria for the purpose of model selection. The convergence rates of estimated factors, loadings, and conditional sparse covariance matrix functions under various functional matrix norms, are respectively established for DIGIT and FPOET estimators. Numerical studies including extensive simulations and two real data applications on mortality rates and functional portfolio allocation are conducted to examine the finite-sample performance of the proposed methodology.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.