A quadratic lower bound for the number of minimal geodesics (2311.01626v2)
Abstract: A minimal geodesic on a Riemannian manifold is a geodesic defined on $\mathbb{R}$ that lifts to a globally distance minimizing curve on the universal covering. Bangert proved that there is a lower bound for the number of geometrically distinct minimal geodesics of closed Riemannian manifolds that is linear in the first Betti number, using the stable norm unit ball on the first homology. We refine this method to obtain a quadratic lower bound.
- Ammann, B. Minimale Geodätische auf Mannigfaltigkeiten mit nilpotenter Fundamentalgruppe. Diplomarbeit, Universität Freiburg, Germany, 1994. DOI: 10.5283/epub.53183.
- Ammann, B. Minimal geodesics and nilpotent fundamental groups. Geom. Dedicata 67 (1997), 129â148.
- Edges of symmetric polytopes. Work in progress.
- Sur la forme de la boule unitĂŠ de la norme stable unidimensionnelle. Manuscripta Math. 119, 3 (2006), 347â358.
- Bangert, V. Mather sets for twist maps and geodesics on tori. In Dynamics reported, Vol. 1, vol. 1 of Dynam. Report. Ser. Dynam. Systems Appl. Wiley, Chichester, 1988, pp. 1â56.
- Bangert, V. Minimal geodesics. Ergod. Th. & Dynam. Sys. 10, 2 (1990), 263â286.
- Bangert, V. Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. Partial Differential Equations 2, 1 (1994), 49â63.
- Bleecker, D. D. The Gauss-Bonnet inequality and almost-geodesic loops. Advances in Math. 14 (1974), 183â193.
- Bliss, G. A. The geodesic lines on the anchor ring. Ann. of Math. (2) 4, 1 (1902), 1â21.
- Minimal heteroclinic geodesics for the nđnitalic_n-torus. Calc. Var. Partial Differential Equations 9, 2 (1999), 125â139.
- Burago, D. Periodic metrics. Advances in Soviet Mathematics 9 (1992), 205â210.
- A course in metric geometry, vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
- On the structure of the stable norm of periodic metrics. Math. Res. Lett. 4, 6 (1997), 791â808.
- Federer, H. Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24 (1974/75), 351â407.
- Closed geodesics on surfaces. Bull. London Math. Soc. 14, 5 (1982), 385â391.
- Gromov, M. Structures mÊtriques pour les variÊtÊs riemanniennes, vol. 1 of Textes MathÊmatiques [Mathematical Texts]. CEDIC, Paris, 1981.
- Gromov, M. Hyperbolic groups. In Essays in group theory, vol. 8 of Math. Sci. Res. Inst. Publ. Springer, New York, 1987, pp. 75â263.
- Gromov, M. Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser Boston Inc., Boston, MA, 1999.
- Hedlund, G. A. Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math. (2) 33, 4 (1932), 719â739.
- Jotz, M. Hedlund metrics and the stable norm. Differential Geom. Appl. 27, 4 (2009), 543â550.
- Klingenberg, W. Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ. Invent. Math. 14 (1971), 63â82.
- LĂśh, C. â1superscriptâ1\ell^{1}roman_â start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-Homology and Simplicial Volume. PhD thesis, WWUÂ MĂźnster, 2007. http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216.
- Massart, D. Normes stables des surfaces. C. R. Acad. Sci. Paris SĂŠr. I Math. 324, 2 (1997), 221â224.
- Massart, D. Stable norms of surfaces: local structure of the unit ball of rational directions. Geom. Funct. Anal. 7, 6 (1997), 996â1010.
- Representing codimension-one homology classes by embedded submanifolds. Pacific J. Math. 68, 1 (1977), 175â176.
- Milnor, J. Morse theory, vol. No. 51 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells.
- Montealegre, P. On the stable norm of slit tori and the Farey sequence, 2023. Preprint, arXiv:Â 2310.05570.
- Morse, H. M. A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26, 1 (1924), 25â60.
- Navas, A. Groups of circle diffeomorphisms, spanish ed. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2011.
- Novik, I. A tale of centrally symmetric polytopes and spheres. In Recent trends in algebraic combinatorics, vol. 16 of Assoc. Women Math. Ser. Springer, 2019, pp. 305â331.
- Problems and theorems in analysis. I. Classics in Mathematics. Springer, 1998. Series, integral calculus, theory of functions, Translated from the German by Dorothee Aeppli, Reprint of the 1978 English translation.
- Sakai, T. Riemannian geometry, vol. 149 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author.
- Schmidt, M. L2superscriptđż2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-Betti Numbers of ââ\mathcal{R}caligraphic_R-Spaces and the Integral Foliated Simplicial Volume. PhD thesis, Westfälische Wilhelms-Universität MĂźnster, 2005. http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563.
- Straszewicz, S. Ăber exponierte Punkte abgeschlossener Punktemengen. Fund. Math. 24 (1935), 139â143.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.