The two upper critical dimensions of the Ising and Potts models (2311.01529v2)
Abstract: We derive the exact actions of the $Q$-state Potts model valid on any graph, first for the spin degrees of freedom, and second for the Fortuin-Kasteleyn clusters. In both cases the field is a traceless $Q$-component scalar field $\Phi\alpha$. For the Ising model ($Q=2$), the field theory for the spins has upper critical dimension $d_{\rm c}{\rm spin}=4$, whereas for the clusters it has $d_{\rm c}{\rm cluster}=6$. As a consequence, the probability for three points to be in the same cluster is not given by mean-field theory for $d$ within $4<d<6$. We estimate the associated universal structure constant as $C=\sqrt{6-d}+ {\cal O}(6-d){3/2}$. This shows that some observables in the Ising model have an upper critical dimension of 4, while others have an upper critical dimension of $6$. Combining perturbative results from the $\epsilon=6-d$ expansion with a non-perturbative treatment close to dimension $d=4$ allows us to locate the shape of the critical domain of the Potts model in the whole $(Q,d)$ plane.
- F. Y. Wu, The Potts model, Rev. Mod. Phys. 54 (1982) 235–268.
- On the random-cluster model: I. Introduction and relation to other models, Physica 57 (1972) 536–564.
- G.R. Golner, Investigation of the Potts model using renormalization-group techniques, Phys. Rev. B 8 (1973) 3419–3422.
- Critical behaviour of the continuous n𝑛nitalic_n-component Potts model, J. Phys. A 8 (1975) 1495.
- D.J. Amit, Renormalization of the Potts model, J. Phys. A 9 (1976) 1441.
- Erratum: Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 14 (1976) 5125–5125.
- Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13 (1976) 4159–4171.
- O.F. de Alcantara Bonfirm, J.E. Kirkham and A.J. McKane, Critical exponents for the percolation problem and the Yang-Lee edge singularity, J. Phys. A 14 (1981) 2391–2413.
- F.Y. Wu, Percolation and the Potts model, J. Stat. Phys. 18 (1978) 115–123.
- Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240–243.
- S.M. Chester and N. Su, Upper critical dimension of the 3-state Potts model, (2022), arXiv:2210.09091.
- Equivalent-neighbor Potts models in two dimensions, Phys. Rev. E 94 (2016) 052103.
- A. K. Hartmann, Calculation of partition functions by measuring component distributions, Phys. Rev. Lett. 94 (2005) 050601.
- The ferromagnetic q-state Potts model on three-dimensional lattices: a study for real values of q, Physica A 296 (2001) 460–482.
- q𝑞qitalic_q-state Potts model in general dimension, Phys. Rev. B 23 (1981) 6055–6060.
- The q−limit-from𝑞q-italic_q -state Potts model from the nonperturbative renormalization group, (2023), arXiv:2309.06489.
- J. Lee and J.M. Kosterlitz, Three-dimensional q𝑞qitalic_q-state Potts model: Monte Carlo study near q=3𝑞3q=3italic_q = 3, Phys. Rev. B 43 (1991) 1268–1271.
- F. Gliozzi, Simulation of Potts models with real q and no critical slowing down, Phys. Rev. E 66 (2002) 016115.
- R.J. Baxter, Potts model at the critical temperature, J. Phys. C 6 (1973) L445.
- Metastability in the Potts model: exact results in the large q limit, J. Stat. Mech. 2020 (2020) 063214.
- H. Duminil-Copin, V. Sidoravicius and V. Tassion, Continuity of the phase transition for planar random-cluster and Potts models with 1≤q≤41𝑞41\leq q\leq 41 ≤ italic_q ≤ 4, Comm. Math. Phys. 349 (2017) 47–107.
- B. Delamotte, An Introduction to the Nonperturbative Renormalization Group, Springer, Berlin, Heidelberg, 2012.
- The nonperturbative functional renormalization group and its applications, Phys. Rep. 910 (2021) 1–114, arXiv:2006.04853.
- R.B.A Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech. 2018 (2018) 013206.
- K.E. Newman, E.K. Riedel and S. Muto, Q𝑄Qitalic_Q-state Potts model by Wilson’s exact renormalization-group equation, Phys. Rev. B 29 (1984) 302–313.
- A. Aharony and E. Pytte, First- and second-order transitions in the Potts model near four dimensions, Phys. Rev. B 23 (1981) 362–367.
- Crossover exponents, fractal dimensions and logarithms in Landau-Potts field theories, EPJC 80 (2020) 1127, arXiv:2009.02589.
- Five-loop renormalization of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory with applications to the Lee-Yang edge singularity and percolation theory, Phys. Rev. D 103 (2021) 116024.
- M. Kompaniets and A. Pikelner, Critical exponents from five-loop scalar theory renormalization near six dimensions, Phys. Lett. B 817 (2021) 136331.
- Multicritical Landau-Potts field theory, Phys. Rev. D 102 (2020) 125024, arXiv:2010.09757.
- A. Nahum, Critical Phenomena in Loop Models, Springer, 2015.
- Conformal Field Theory, Springer, New York, 1997.
- D.J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore, 3rd edition, 2005.
- J. Cardy, Logarithmic correlations in quenched random magnets and polymers, (1999), cond-mat/9911024.
- Logarithmic observables in critical percolation, J. Stat. Mech. (2012) L07001, arXiv:1206.2312.
- J. Zinn-Justin, Quantum Field Theory and Critical Phenomena: Fifth Edition, Oxford University Press, 2021.
- D. Amit, Field Theory, the Renormalization Group and Critical Phenomena, World Scientific, 1984.
- K.J. Wiese and F. David, Self-avoiding tethered membranes at the tricritical point, Nucl. Phys. B 450 (1995) 495–557, cond-mat/9503126.
- K.J. Wiese and F. David, New renormalization group results for scaling of self-avoiding tethered membranes, Nucl. Phys. B 487 (1997) 529–632, cond-mat/9608022.
- K.J. Wiese, Polymerized membranes, a review, Volume 19 of Phase Transitions and Critical Phenomena, Acadamic Press, London, 1999.
- V. Goncalves, Skeleton expansion and large spin bootstrap for ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory, (2018), arXiv:1809.09572.
- F. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A 44 (2010) 032001.
- A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183–196, hep-th/0505063.
- Connectivities of Potts Fortuin-Kasteleyn clusters and time-like Liouville correlator, Nucl. Phys. B 875 (2013) 719–737, arXiv:1304.6511.
- Three-point functions in c≤1𝑐1c\leq 1italic_c ≤ 1 Liouville theory and conformal loop ensembles, Phys. Rev. Lett. 116 (2016) 130601.
- M. Kompaniets and A. Pikelner, private communication.
- J. A. Gracey, Four loop renormalization of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory in six dimensions, Phys. Rev. D 92 (2015) 025012, arXiv:1506.03357.
- M. Kompaniets, private communication.
- M. Kompaniets and K.J. Wiese, to be published.
- A.J. McKane, D.J. Wallace and R.K.P. Zia, Models for strong interactions in 6−ϵ6italic-ϵ6-\epsilon6 - italic_ϵ dimensions, Phys. Lett. B 65 (1976) 171–173.
- J.A. Gracey, T.A. Ryttov and R. Shrock, Renormalization-group behavior of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theories in d=6𝑑6d=6italic_d = 6 dimensions, Phys. Rev. D 102 (2020) 045016.
- Three loop analysis of the critical O(N)𝑂𝑁O(N)italic_O ( italic_N ) models in 6−ϵ6italic-ϵ6-\epsilon6 - italic_ϵ dimensions, Phys. Rev. D 91 (2015) 045011.
- Six-dimensional Landau-Ginzburg-Wilson theory, Phys. Rev. D 95 (2017) 025029.
- D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007.
- M. Mézard and P. Young, Replica symmetry-breaking in the random field Ising-model, Eur. Phys. Lett. (1992) 653–659.
- P. Le Doussal and K.J. Wiese, Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension, Phys. Rev. Lett. 96 (2006) 197202, cond-mat/0510344.
- D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 2017 (2017) 86.
- J.L. Jacobsen and H. Saleur, Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q𝑄Qitalic_Q-state potts model: a study of the s-channel spectra, JHEP 2019 (2019) 84.
- O(n)𝑂𝑛O(n)italic_O ( italic_n ) Heisenberg model close to n=d=2𝑛𝑑2n=d=2italic_n = italic_d = 2, Phys. Rev. Lett. 45 (1980) 499–501.
- Hidden critical points in the two-dimensional O(n>2)𝑂𝑛2O(n>2)italic_O ( italic_n > 2 ) model: Exact numerical study of a complex conformal field theory, Phys. Rev. Lett. 131 (2023) 131601.
- V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q>4𝑄4Q>4italic_Q > 4, SciPost Phys. 5 (2018) 50.
- H. Ma and Y.-C. He, Shadow of complex fixed point: Approximate conformality of Q>4𝑄4{Q}>4italic_Q > 4 Potts model, Phys. Rev. B 99 (2019) 195130.
- Lattice realization of complex CFTs: Two-dimensional Potts model with Q>4𝑄4{Q}>4italic_Q > 4 states, (2024), arXiv:2402.10732.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.