Papers
Topics
Authors
Recent
2000 character limit reached

The two upper critical dimensions of the Ising and Potts models (2311.01529v2)

Published 2 Nov 2023 in hep-th and cond-mat.stat-mech

Abstract: We derive the exact actions of the $Q$-state Potts model valid on any graph, first for the spin degrees of freedom, and second for the Fortuin-Kasteleyn clusters. In both cases the field is a traceless $Q$-component scalar field $\Phi\alpha$. For the Ising model ($Q=2$), the field theory for the spins has upper critical dimension $d_{\rm c}{\rm spin}=4$, whereas for the clusters it has $d_{\rm c}{\rm cluster}=6$. As a consequence, the probability for three points to be in the same cluster is not given by mean-field theory for $d$ within $4<d<6$. We estimate the associated universal structure constant as $C=\sqrt{6-d}+ {\cal O}(6-d){3/2}$. This shows that some observables in the Ising model have an upper critical dimension of 4, while others have an upper critical dimension of $6$. Combining perturbative results from the $\epsilon=6-d$ expansion with a non-perturbative treatment close to dimension $d=4$ allows us to locate the shape of the critical domain of the Potts model in the whole $(Q,d)$ plane.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. F. Y. Wu, The Potts model, Rev. Mod. Phys. 54 (1982) 235–268.
  2. On the random-cluster model: I. Introduction and relation to other models, Physica 57 (1972) 536–564.
  3. G.R. Golner, Investigation of the Potts model using renormalization-group techniques, Phys. Rev. B 8 (1973) 3419–3422.
  4. Critical behaviour of the continuous n𝑛nitalic_n-component Potts model, J. Phys. A 8 (1975) 1495.
  5. D.J. Amit, Renormalization of the Potts model, J. Phys. A 9 (1976) 1441.
  6. Erratum: Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 14 (1976) 5125–5125.
  7. Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13 (1976) 4159–4171.
  8. O.F. de Alcantara Bonfirm, J.E. Kirkham and A.J. McKane, Critical exponents for the percolation problem and the Yang-Lee edge singularity, J. Phys. A 14 (1981) 2391–2413.
  9. F.Y. Wu, Percolation and the Potts model, J. Stat. Phys. 18 (1978) 115–123.
  10. Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240–243.
  11. S.M. Chester and N. Su, Upper critical dimension of the 3-state Potts model, (2022), arXiv:2210.09091.
  12. Equivalent-neighbor Potts models in two dimensions, Phys. Rev. E 94 (2016) 052103.
  13. A. K. Hartmann, Calculation of partition functions by measuring component distributions, Phys. Rev. Lett. 94 (2005) 050601.
  14. The ferromagnetic q-state Potts model on three-dimensional lattices: a study for real values of q, Physica A 296 (2001) 460–482.
  15. q𝑞qitalic_q-state Potts model in general dimension, Phys. Rev. B 23 (1981) 6055–6060.
  16. The q−limit-from𝑞q-italic_q -state Potts model from the nonperturbative renormalization group, (2023), arXiv:2309.06489.
  17. J. Lee and J.M. Kosterlitz, Three-dimensional q𝑞qitalic_q-state Potts model: Monte Carlo study near q=3𝑞3q=3italic_q = 3, Phys. Rev. B 43 (1991) 1268–1271.
  18. F. Gliozzi, Simulation of Potts models with real q and no critical slowing down, Phys. Rev. E 66 (2002) 016115.
  19. R.J. Baxter, Potts model at the critical temperature, J. Phys. C 6 (1973) L445.
  20. Metastability in the Potts model: exact results in the large q limit, J. Stat. Mech. 2020 (2020) 063214.
  21. H. Duminil-Copin, V. Sidoravicius and V. Tassion, Continuity of the phase transition for planar random-cluster and Potts models with 1≤q≤41𝑞41\leq q\leq 41 ≤ italic_q ≤ 4, Comm. Math. Phys. 349 (2017) 47–107.
  22. B. Delamotte, An Introduction to the Nonperturbative Renormalization Group, Springer, Berlin, Heidelberg, 2012.
  23. The nonperturbative functional renormalization group and its applications, Phys. Rep. 910 (2021) 1–114, arXiv:2006.04853.
  24. R.B.A Zinati and A. Codello, Functional RG approach to the Potts model, J. Stat. Mech. 2018 (2018) 013206.
  25. K.E. Newman, E.K. Riedel and S. Muto, Q𝑄Qitalic_Q-state Potts model by Wilson’s exact renormalization-group equation, Phys. Rev. B 29 (1984) 302–313.
  26. A. Aharony and E. Pytte, First- and second-order transitions in the Potts model near four dimensions, Phys. Rev. B 23 (1981) 362–367.
  27. Crossover exponents, fractal dimensions and logarithms in Landau-Potts field theories, EPJC 80 (2020) 1127, arXiv:2009.02589.
  28. Five-loop renormalization of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory with applications to the Lee-Yang edge singularity and percolation theory, Phys. Rev. D 103 (2021) 116024.
  29. M. Kompaniets and A. Pikelner, Critical exponents from five-loop scalar theory renormalization near six dimensions, Phys. Lett. B 817 (2021) 136331.
  30. Multicritical Landau-Potts field theory, Phys. Rev. D 102 (2020) 125024, arXiv:2010.09757.
  31. A. Nahum, Critical Phenomena in Loop Models, Springer, 2015.
  32. Conformal Field Theory, Springer, New York, 1997.
  33. D.J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, Singapore, 3rd edition, 2005.
  34. J. Cardy, Logarithmic correlations in quenched random magnets and polymers, (1999), cond-mat/9911024.
  35. Logarithmic observables in critical percolation, J. Stat. Mech. (2012) L07001, arXiv:1206.2312.
  36. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena: Fifth Edition, Oxford University Press, 2021.
  37. D. Amit, Field Theory, the Renormalization Group and Critical Phenomena, World Scientific, 1984.
  38. K.J. Wiese and F. David, Self-avoiding tethered membranes at the tricritical point, Nucl. Phys. B 450 (1995) 495–557, cond-mat/9503126.
  39. K.J. Wiese and F. David, New renormalization group results for scaling of self-avoiding tethered membranes, Nucl. Phys. B 487 (1997) 529–632, cond-mat/9608022.
  40. K.J. Wiese, Polymerized membranes, a review, Volume 19 of Phase Transitions and Critical Phenomena, Acadamic Press, London, 1999.
  41. V. Goncalves, Skeleton expansion and large spin bootstrap for ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory, (2018), arXiv:1809.09572.
  42. F. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A 44 (2010) 032001.
  43. A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183–196, hep-th/0505063.
  44. Connectivities of Potts Fortuin-Kasteleyn clusters and time-like Liouville correlator, Nucl. Phys. B 875 (2013) 719–737, arXiv:1304.6511.
  45. Three-point functions in c≤1𝑐1c\leq 1italic_c ≤ 1 Liouville theory and conformal loop ensembles, Phys. Rev. Lett. 116 (2016) 130601.
  46. M. Kompaniets and A. Pikelner, private communication.
  47. J. A. Gracey, Four loop renormalization of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theory in six dimensions, Phys. Rev. D 92 (2015) 025012, arXiv:1506.03357.
  48. M. Kompaniets, private communication.
  49. M. Kompaniets and K.J. Wiese, to be published.
  50. A.J. McKane, D.J. Wallace and R.K.P. Zia, Models for strong interactions in 6−ϵ6italic-ϵ6-\epsilon6 - italic_ϵ dimensions, Phys. Lett. B 65 (1976) 171–173.
  51. J.A. Gracey, T.A. Ryttov and R. Shrock, Renormalization-group behavior of ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT theories in d=6𝑑6d=6italic_d = 6 dimensions, Phys. Rev. D 102 (2020) 045016.
  52. Three loop analysis of the critical O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) models in 6−ϵ6italic-ϵ6-\epsilon6 - italic_ϵ dimensions, Phys. Rev. D 91 (2015) 045011.
  53. Six-dimensional Landau-Ginzburg-Wilson theory, Phys. Rev. D 95 (2017) 025029.
  54. D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007.
  55. M. Mézard and P. Young, Replica symmetry-breaking in the random field Ising-model, Eur. Phys. Lett. (1992) 653–659.
  56. P. Le Doussal and K.J. Wiese, Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension, Phys. Rev. Lett. 96 (2006) 197202, cond-mat/0510344.
  57. D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 2017 (2017)  86.
  58. J.L. Jacobsen and H. Saleur, Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q𝑄Qitalic_Q-state potts model: a study of the s-channel spectra, JHEP 2019 (2019)  84.
  59. O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) Heisenberg model close to n=d=2𝑛𝑑2n=d=2italic_n = italic_d = 2, Phys. Rev. Lett. 45 (1980) 499–501.
  60. Hidden critical points in the two-dimensional O⁢(n>2)𝑂𝑛2O(n>2)italic_O ( italic_n > 2 ) model: Exact numerical study of a complex conformal field theory, Phys. Rev. Lett. 131 (2023) 131601.
  61. V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q>4𝑄4Q>4italic_Q > 4, SciPost Phys. 5 (2018)  50.
  62. H. Ma and Y.-C. He, Shadow of complex fixed point: Approximate conformality of Q>4𝑄4{Q}>4italic_Q > 4 Potts model, Phys. Rev. B 99 (2019) 195130.
  63. Lattice realization of complex CFTs: Two-dimensional Potts model with Q>4𝑄4{Q}>4italic_Q > 4 states, (2024), arXiv:2402.10732.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.