Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structure preserving discontinuous Galerkin approximation of a hyperbolic-parabolic system

Published 2 Nov 2023 in math.NA and cs.NA | (2311.01264v2)

Abstract: We study the numerical approximation of a coupled hyperbolic-parabolic system by a family of discontinuous Galerkin space-time finite element methods. The model is rewritten as a first-order evolutionary problem that is treated by the unified abstract solution theory of R. Picard. For the discretization in space, generalizations of the distribution gradient and divergence operators on broken polynomial spaces are defined. Since their skew-selfadjointness is perturbed by boundary surface integrals, adjustments are introduced such that the skew-selfadjointness of the first-order differential operator in space is recovered. Well-posedness of the fully discrete problem and error estimates for the discontinuous Galerkin approximation in space and time are proved.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.