Papers
Topics
Authors
Recent
2000 character limit reached

Contextual Confidence and Generative AI (2311.01193v2)

Published 2 Nov 2023 in cs.AI

Abstract: Generative AI models perturb the foundations of effective human communication. They present new challenges to contextual confidence, disrupting participants' ability to identify the authentic context of communication and their ability to protect communication from reuse and recombination outside its intended context. In this paper, we describe strategies--tools, technologies and policies--that aim to stabilize communication in the face of these challenges. The strategies we discuss fall into two broad categories. Containment strategies aim to reassert context in environments where it is currently threatened--a reaction to the context-free expectations and norms established by the internet. Mobilization strategies, by contrast, view the rise of generative AI as an opportunity to proactively set new and higher expectations around privacy and authenticity in mediated communication.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (137)
  1. P.Ā Verma. (2023, March) They thought loved ones were calling for help. it was an AI scam. The Washington Post. [Online]. Available: https://www.washingtonpost.com/technology/2023/03/05/ai-voice-scam/
  2. J.Ā A. Lanz, ā€œDating app tool upgraded with AI is poised to power catfishing,ā€ Decrypt, 2023.
  3. S.Ā Kreps and D.Ā L. Kriner, ā€œThe potential impact of emerging technologies on democratic representation: Evidence from a field experiment,ā€ New Media & Society, pp. 1–20, 2023.
  4. S.Ā Jain, D.Ā Siddharth, and G.Ā Weyl, ā€œPlural publics,ā€ Edmond and Lily Safra Center for Ethics, 2023. [Online]. Available: https://gettingplurality.org/2023/03/18/plural-publics/
  5. C.Ā E. Shannon, ā€œA mathematical theory of communication,ā€ The Bell System Technical Journal, vol.Ā 27, no.Ā 3, pp. 379–423, 1948.
  6. I.Ā Solaiman, Z.Ā Talat, W.Ā Agnew, L.Ā Ahmad, D.Ā Baker, S.Ā L. Blodgett, H.Ā Daumé III, J.Ā Dodge, E.Ā Evans, S.Ā Hooker etĀ al., ā€œEvaluating the social impact of generative AI systems in systems and society,ā€ arXiv preprint arXiv:2306.05949, 2023.
  7. R.Ā Shelby, S.Ā Rismani, K.Ā Henne, A.Ā Moon, N.Ā Rostamzadeh, P.Ā Nicholas, N.Ā Yilla-Akbari, J.Ā Gallegos, A.Ā Smart, E.Ā Garcia etĀ al., ā€œSociotechnical harms of algorithmic systems: Scoping a taxonomy for harm reduction,ā€ in Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 2023, pp. 723–741.
  8. L.Ā Weidinger, J.Ā Mellor, M.Ā Rauh, C.Ā Griffin, J.Ā Uesato, P.-S. Huang, M.Ā Cheng, M.Ā Glaese, B.Ā Balle, A.Ā Kasirzadeh etĀ al., ā€œEthical and social risks of harm from language models,ā€ arXiv preprint arXiv:2112.04359, 2021.
  9. R.Ā Bommasani, D.Ā A. Hudson, E.Ā Adeli, R.Ā Altman, S.Ā Arora, S.Ā von Arx, M.Ā S. Bernstein, J.Ā Bohg, A.Ā Bosselut, E.Ā Brunskill etĀ al., ā€œOn the opportunities and risks of foundation models,ā€ arXiv preprint arXiv:2108.07258, 2021.
  10. L.Ā Weidinger, J.Ā Uesato, M.Ā Rauh, C.Ā Griffin, P.-S. Huang, J.Ā Mellor, A.Ā Glaese, M.Ā Cheng, B.Ā Balle, A.Ā Kasirzadeh etĀ al., ā€œTaxonomy of risks posed by language models,ā€ in Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 2022, pp. 214–229.
  11. T.Ā Shevlane, S.Ā Farquhar, B.Ā Garfinkel, M.Ā Phuong, J.Ā Whittlestone, J.Ā Leung, D.Ā Kokotajlo, N.Ā Marchal, M.Ā Anderljung, N.Ā Kolt etĀ al., ā€œModel evaluation for extreme risks,ā€ arXiv preprint arXiv:2305.15324, 2023.
  12. M.Ā Brundage, S.Ā Avin, J.Ā Clark, H.Ā Toner, P.Ā Eckersley, B.Ā Garfinkel, A.Ā Dafoe, P.Ā Scharre, T.Ā Zeitzoff, B.Ā Filar etĀ al., ā€œThe malicious use of artificial intelligence: Forecasting, prevention, and mitigation,ā€ arXiv preprint arXiv:1802.07228, 2018.
  13. H.Ā Nissenbaum, ā€œPrivacy as contextual integrity,ā€ Washington Law Review, vol.Ā 79, p. 119, 2004.
  14. National Science and Technology Council, ā€œRoadmap for researchers on priorities related to information integrity research and development,ā€ 2022.
  15. D.Ā Allen and J.Ā Pottle, ā€œDemocratic knowledge and the problem of faction,ā€ Knight Foundation White Paper Series, Trust, Media, and Democracy, 2018.
  16. A.Ā E. Marwick and d.Ā boyd, ā€œI tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience,ā€ New Media & Society, vol.Ā 13, no.Ā 1, pp. 114–133, 2011.
  17. N.Ā K. Baym and D.Ā Boyd, ā€œSocially mediated publicness: An introduction,ā€ Journal of Broadcasting & Electronic Media, vol.Ā 56, no.Ā 3, pp. 320–329, 2012.
  18. E.Ā Brynjolfsson, ā€œThe Turing trap: The promise & peril of human-like artificial intelligence,ā€ Daedalus, vol. 151, no.Ā 2, pp. 272–287, 2022.
  19. E.Ā Horvitz, ā€œOn the horizon: Interactive and compositional deepfakes,ā€ in Proceedings of the 2022 International Conference on Multimodal Interaction.Ā Ā Ā Bengaluru, India: ACM, November 2022, pp. 653–661.
  20. J.Ā Bote, ā€œSanas, the buzzy Bay Area startup that wants to make the world sound whiter,ā€ San Francisco Gate, 2022.
  21. R.Ā Chandran. (2023, April) Indigenous groups fear culture distortion as AI learns their languages. The Japan Times. [Online]. Available: https://www.japantimes.co.jp/news/2023/04/10/world/indigenous-language-ai-colonization-worries/
  22. R.Ā McIlroy-Young, J.Ā Kleinberg, S.Ā Sen, S.Ā Barocas, and A.Ā Anderson, ā€œMimetic models: Ethical implications of AI that acts like you,ā€ in Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 2022, pp. 479–490.
  23. J.Ā A. Goldstein, G.Ā Sastry, M.Ā Musser, R.Ā DiResta, M.Ā Gentzel, and K.Ā Sedova, ā€œGenerative language models and automated influence operations: Emerging threats and potential mitigations,ā€ arXiv preprint arXiv:2301.04246, 2023.
  24. M.Ā Sharma, M.Ā Tong, T.Ā Korbak, D.Ā Duvenaud, A.Ā Askell, S.Ā R. Bowman, N.Ā Cheng, E.Ā Durmus, Z.Ā Hatfield-Dodds, S.Ā R. Johnston etĀ al., ā€œTowards understanding sycophancy in language models,ā€ arXiv preprint arXiv:2310.13548, 2023.
  25. H.Ā Vasconcelos, M.Ā Jƶrke, M.Ā Grunde-McLaughlin, T.Ā Gerstenberg, M.Ā S. Bernstein, and R.Ā Krishna, ā€œExplanations can reduce overreliance on AI systems during decision-making,ā€ Proceedings of the ACM on Human-Computer Interaction, vol.Ā 7, no. CSCW1, pp. 1–38, 2023.
  26. P.Ā Henderson, X.Ā Li, D.Ā Jurafsky, T.Ā Hashimoto, M.Ā A. Lemley, and P.Ā Liang, ā€œFoundation models and fair use,ā€ arXiv preprint arXiv:2303.15715, 2023.
  27. N.Ā Carlini, F.Ā Tramer, E.Ā Wallace, M.Ā Jagielski, A.Ā Herbert-Voss, K.Ā Lee, A.Ā Roberts, T.Ā Brown, D.Ā Song, U.Ā Erlingsson etĀ al., ā€œExtracting training data from large language models,ā€ in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 2633–2650.
  28. M.Ā Nasr, N.Ā Carlini, J.Ā Hayase, M.Ā Jagielski, A.Ā F. Cooper, D.Ā Ippolito, C.Ā A. Choquette-Choo, E.Ā Wallace, F.Ā TramĆØr, and K.Ā Lee, ā€œScalable extraction of training data from (production) language models,ā€ arXiv preprint arXiv:2311.17035, 2023.
  29. I.Ā Shumailov, Z.Ā Shumaylov, Y.Ā Zhao, Y.Ā Gal, N.Ā Papernot, and R.Ā Anderson, ā€œThe curse of recursion: Training on generated data makes models forget,ā€ arXiv preprint arxiv:2305.17493, 2023.
  30. K.Ā Singhal, T.Ā Tu, J.Ā Gottweis, R.Ā Sayres, E.Ā Wulczyn, L.Ā Hou, K.Ā Clark, S.Ā Pfohl, H.Ā Cole-Lewis, D.Ā Neal etĀ al., ā€œTowards expert-level medical question answering with large language models,ā€ arXiv preprint arXiv:2305.09617, 2023.
  31. European Disability Forum, ā€œResolution on the ā€œEU Artificial Intelligence Act for the inclusion of persons with disabilitiesā€,ā€ Tech. Rep., 2023. [Online]. Available: https://www.edf-feph.org/content/uploads/2023/04/EDF-Board-Resolution-on-the-EU-Artificial-intelligence-Act-for {}-the-inclusion-of-persons-with-disabilities.pdf
  32. Internet Crime Complaint Center. (2022) Federal Bureau of Investigation elder fraud report. [Online]. Available: https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3ElderFraudReport.pdf
  33. A.Ā Puig. (2023, March) Scammers use AI to enhance their family emergency schemes. Federal Trade Commission Consumer Alert. [Online]. Available: https://consumer.ftc.gov/consumer-alerts/2023/03/scammers-use-ai-enhance-their-family-emergency-schemes
  34. Consumer Financial Protection Bureau, ā€œOffice of servicemember affairs annual report,ā€ Tech. Rep., 2023. [Online]. Available: https://s3.amazonaws.com/files.consumerfinance.gov/f/documents/cfpb_osa-annual-report_2022.pdf
  35. M.Ā Xiao, M.Ā Wang, A.Ā Kulshrestha, and J.Ā Mayer, ā€œAccount verification on social media: User perceptions and paid enrollment,ā€ arXiv preprint arXiv:2304.14939, 2023.
  36. D.Ā Akhawe and A.Ā P. Felt, ā€œAlice in warningland: A large-scale field study of browser security warning effectiveness,ā€ in Proceedings of the 22nd USENIX Security Symposium, 2013, pp. 257–272.
  37. The Coalition for Content Provenance and Authenticity. (2023) Overview of C2PA. [Online]. Available: https://c2pa.org/
  38. Project Origin. (2023) Project origin. [Online]. Available: https://www.originproject.info/
  39. Content Authenticity Initiative. (2023) Content authenticity initiative. [Online]. Available: https://contentauthenticity.org/
  40. Microsoft. (2023) Cross-platform origin of content framework. [Online]. Available: https://github.com/microsoft/xpoc-framework
  41. V.Ā Buterin. (2023) What do I think about Community Notes? [Online]. Available: https://vitalik.ca/general/2023/08/16/communitynotes.html
  42. D.Ā Alba, D.Ā Lu, L.Ā Yin, and F.Ā Eric, ā€œHow musk’s x is failing to stem the surge of misinformation about israel and gaza,ā€ Bloomberg.com. [Online]. Available: https://www.bloomberg.com/graphics/2023-israel-hamas-war-misinformation-twitter-community-notes
  43. eĀ Estonia. (2023) e-identity: ID-card. [Online]. Available: https://e-estonia.com/solutions/e-identity/id-card/
  44. Unique Identification Authority of India. (2023) Aadhaar. [Online]. Available: https://uidai.gov.in/en/my-aadhaar/get-aadhaar.html
  45. Singpass. (2023) Singapore government identity passport. [Online]. Available: https://www.singpass.gov.sg/
  46. Microsoft Research. (2023) U-prove. [Online]. Available: https://www.microsoft.com/en-us/research/project/u-prove/
  47. W3C. (2022) Verifiable credentials data model v1.1. [Online]. Available: https://www.w3.org/TR/vc-data-model/
  48. American Association of Motor Vehicle Administrators. (2023) Mobile driver’s license (mDL) implementation guidelines. [Online]. Available: https://www.aamva.org/getmedia/b801da7b-5584-466c-8aeb-f230cef6dda5/mDL-Implementation-Guidelines-Version-1-2_final.pdf
  49. Digital Government Exchange (DGX) Digital Identity Working Group. (2022) Digital identity and verifiable credentials in centralised, decentralised and hybrid systems. [Online]. Available: https://www.developer.tech.gov.sg/our-digital-journey/digital-government-exchange/files/DGX%20DIWG%202022%20Report%20v1.5.pdf
  50. Apple. (2023) Apple vision pro. [Online]. Available: https://www.apple.com/apple-vision-pro/
  51. Microsoft. (2023) LinkedIn and Microsoft Entra introduce a new way to verify your workplace. [Online]. Available: https://www.microsoft.com/en-us/security/blog/2023/04/12/linkedin-and-microsoft-entra-introduce-a-new-way-to-verify-your-workplace/
  52. S.Ā Basu and R.Ā Malik. (2023) India’s Aadhaar surveillance project should concern us all. WIRED UK. [Online]. Available: https://www.wired.co.uk/article/india-aadhaar-biometrics-privacy
  53. Worldcoin. (2023) Worldcoin whitepaper. [Online]. Available: https://whitepaper.worldcoin.org/
  54. N.Ā Immorlica, M.Ā O. Jackson, and E.Ā G. Weyl, ā€œVerifying identity as a social intersection,ā€ Available at SSRN 3375436, 2019.
  55. OAuth. (2023) Oauth information. [Online]. Available: https://mailarchive.ietf.org/arch/browse/oauth
  56. Gitcoin. (2023) Gitcoin passport. [Online]. Available: https://passport.gitcoin.co/
  57. SpruceID. (2023) SpruceID. [Online]. Available: https://spruceid.com/
  58. Proof of Humanity. (2023) Proof of humanity. [Online]. Available: https://proofofhumanity.id/
  59. D.Ā Siddarth, S.Ā Ivliev, S.Ā Siri, and P.Ā Berman, ā€œWho watches the watchmen? A review of subjective approaches for sybil-resistance in proof of personhood protocols,ā€ Frontiers in Blockchain, vol.Ā 3, pp. 1–16, 2020.
  60. S.Ā Jain, L.Ā Erichsen, and G.Ā Weyl, ā€œA plural decentralized identity frontier: Abstraction v. composability tradeoffs in web3,ā€ arXiv preprint arXiv:2208.11443, 2022.
  61. Y.Ā Wen, J.Ā Kirchenbauer, J.Ā Geiping, and T.Ā Goldstein, ā€œTree-ring watermarks: Fingerprints for diffusion images that are invisible and robust,ā€ arXiv preprint arXiv:2305.20030, 2023.
  62. J.Ā Kirchenbauer, J.Ā Geiping, Y.Ā Wen, J.Ā Katz, I.Ā Miers, and T.Ā Goldstein, ā€œA watermark for large language models,ā€ arXiv preprint arXiv:2301.10226, 2023.
  63. S.Ā Abdelnabi and M.Ā Fritz, ā€œAdversarial watermarking transformer: Towards tracing text provenance with data hiding,ā€ in Proceedings of the 2021 IEEE Symposium on Security and Privacy.Ā Ā Ā IEEE, 2021, pp. 121–140.
  64. X.Ā Zhao, P.Ā Ananth, L.Ā Li, and Y.-X. Wang, ā€œProvable robust watermarking for AI-generated text,ā€ arXiv preprint arXiv:2306.17439, 2023.
  65. S.Ā Aaronson. (2023) My AI safety lecture for UT effective altruism. Shtetl-Optimized. [Online]. Available: https://scottaaronson.blog/?p=6823
  66. S.Ā Gowal and P.Ā Kohli. (2023) Identifying AI-generated images with SynthID. [Online]. Available: https://www.deepmind.com/blog/identifying-ai-generated-images-with-synthid
  67. M.Ā Douze and P.Ā Fernandez. (2023, October) Stable signature: A new method for watermarking images created by open source generative ai. [Online]. Available: https://ai.meta.com/blog/stable-signature-watermarking-generative-ai
  68. Z.Ā Jiang, J.Ā Zhang, and N.Ā Z. Gong, ā€œEvading watermark based detection of AI-generated content,ā€ arXiv preprint arXiv:2305.03807, 2023.
  69. X.Ā Zhao, K.Ā Zhang, Y.-X. Wang, and L.Ā Li, ā€œGenerative autoencoders as watermark attackers: Analyses of vulnerabilities and threats,ā€ arXiv preprint arXiv:2306.01953, 2023.
  70. J.Ā Kirchenbauer, J.Ā Geiping, Y.Ā Wen, M.Ā Shu, K.Ā Saifullah, K.Ā Kong, K.Ā Fernando, A.Ā Saha, M.Ā Goldblum, and T.Ā Goldstein, ā€œOn the reliability of watermarks for large language models,ā€ arXiv preprint arXiv:2306.04634, 2023.
  71. S.Ā Shoker, A.Ā Reddie, S.Ā Barrington, M.Ā Brundage, H.Ā Chahal, M.Ā Depp, B.Ā Drexel, R.Ā Gupta, M.Ā Favaro, J.Ā Hecla etĀ al., ā€œConfidence-building measures for artificial intelligence: Workshop proceedings,ā€ arXiv preprint arXiv:2308.00862, 2023.
  72. A.Ā Karpur, D.Ā Lahav, J.Ā Matheny, J.Ā Alstott, and S.Ā Nevo, ā€œSecuring artificial intelligence model weights: Interim report,ā€ 2023.
  73. D.Ā Kang, T.Ā Hashimoto, I.Ā Stoica, and Y.Ā Sun, ā€œScaling up trustless dnn inference with zero-knowledge proofs,ā€ arXiv preprint arXiv:2210.08674, 2022.
  74. EZKL. (2023) What is EZKL? [Online]. Available: https://docs.ezkl.xyz/
  75. Evals. (2023) Update on ARC’s recent eval efforts. [Online]. Available: https://evals.alignment.org/blog/2023-03-18-update-on-recent-evals/
  76. OpenAI. (2023) GPT-4 system card. [Online]. Available: https://cdn.openai.com/papers/gpt-4-system-card.pdf
  77. Anthropic. (2023) Model card: Claude-2. [Online]. Available: https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
  78. Cohere Safety Team and Responsibility Council. (2023) Generation model card. [Online]. Available: https://docs.cohere.com/docs/generation-card
  79. J.Ā Mƶkander, J.Ā Schuett, H.Ā R. Kirk, and L.Ā Floridi, ā€œAuditing large language models: A three-layered approach,ā€ AI and Ethics, pp. 1–31, 2023.
  80. P.Ā Cihon, M.Ā J. Kleinaltenkamp, J.Ā Schuett, and S.Ā D. Baum, ā€œAI certification: Advancing ethical practice by reducing information asymmetries,ā€ IEEE Transactions on Technology and Society, vol.Ā 2, no.Ā 4, pp. 200–209, 2021.
  81. M.Ā Brundage, S.Ā Avin, J.Ā Wang, H.Ā Belfield, G.Ā Krueger, G.Ā Hadfield, H.Ā Khlaaf, J.Ā Yang, H.Ā Toner, R.Ā Fong etĀ al., ā€œToward trustworthy AI development: Mechanisms for supporting verifiable claims,ā€ arXiv preprint arXiv:2004.07213, 2020.
  82. I.Ā D. Raji, A.Ā Smart, R.Ā N. White, M.Ā Mitchell, T.Ā Gebru, B.Ā Hutchinson, J.Ā Smith-Loud, D.Ā Theron, and P.Ā Barnes, ā€œClosing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing,ā€ in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 2020, pp. 33–44.
  83. S.Ā K. Katyal, ā€œPrivate accountability in the age of artificial intelligence,ā€ UCLA Law Review, vol.Ā 66, p.Ā 54, 2019.
  84. T.Ā Gebru, J.Ā Morgenstern, B.Ā Vecchione, J.Ā W. Vaughan, H.Ā Wallach, H.Ā D. Iii, and K.Ā Crawford, ā€œDatasheets for datasets,ā€ Communications of the ACM, vol.Ā 64, no.Ā 12, pp. 86–92, 2021.
  85. I.Ā D. Raji, P.Ā Xu, C.Ā Honigsberg, and D.Ā Ho, ā€œOutsider oversight: Designing a third party audit ecosystem for AI governance,ā€ in Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 2022, pp. 557–571.
  86. D.Ā Kang and S.Ā Waiwitlikhit. (2023, March) Tensorplonk: A ā€œGPUā€ for ZKML, delivering 1,000x speedups. [Online]. Available: https://medium.com/@danieldkang/tensorplonk-a-gpu-for-zkml-delivering-1-000x-speedups-d1ab0ad27e1c
  87. ā€œZK10: ZKML with EZKL: Where we are and the future,ā€ 2023. [Online]. Available: https://www.youtube.com/watch?v=YI3ljDis8sc
  88. E.Ā G. Weyl, P.Ā Ohlhaver, and V.Ā Buterin, ā€œDecentralized society: Finding web3’s soul,ā€ Available at SSRN 4105763, 2022.
  89. (2023) Pairwise coordination subsidies: A new quadratic funding design. [Online]. Available: https://ethresear.ch/t/pairwise-coordination-subsidies-a-new-quadratic-funding-design/5553
  90. (2023) Plural communication channel. Plurality Network. [Online]. Available: https://github.com/PluralCC#about
  91. T.Ā Shevlane, ā€œStructured access: An emerging paradigm for safe AI deployment,ā€ arXiv preprint arXiv:2201.05159, 2022.
  92. M.Ā Anderljung and J.Ā Hazell, ā€œProtecting society from AI misuse: When are restrictions on capabilities warranted?ā€ arXiv preprint arXiv:2303.09377, 2023.
  93. M.Ā Anderljung, J.Ā Barnhart, J.Ā Leung, A.Ā Korinek, C.Ā O’Keefe, J.Ā Whittlestone, S.Ā Avin, M.Ā Brundage, J.Ā Bullock, D.Ā Cass-Beggs etĀ al., ā€œFrontier AI regulation: Managing emerging risks to public safety,ā€ arXiv preprint arXiv:2307.03718, 2023.
  94. I.Ā Solaiman, ā€œThe gradient of generative AI release: Methods and considerations,ā€ in Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 2023, pp. 111–122.
  95. Anthropic. (2023) Claude 2. [Online]. Available: https://www.anthropic.com/index/claude-2
  96. OpenAI. GPT-4 is OpenAI’s most advanced system, producing safer and more useful responses. [Online]. Available: https://openai.com/gpt-4
  97. K.Ā Singhal, S.Ā Azizi, T.Ā Tu, S.Ā S. Mahdavi, J.Ā Wei, H.Ā W. Chung, N.Ā Scales, A.Ā Tanwani, H.Ā Cole-Lewis, S.Ā Pfohl etĀ al., ā€œLarge language models encode clinical knowledge,ā€ arXiv preprint arXiv:2212.13138, 2022.
  98. J.Ā Howard. (2023, November) AI safety and the age of dislightenment. fast.ai. [Online]. Available: https://www.fast.ai/posts/2023-11-07-dislightenment.html
  99. S.Ā Nakamoto, ā€œBitcoin: A peer-to-peer electronic cash system,ā€ Decentralized business review, 2008.
  100. E.Ā Medina and R.Ā Mac, ā€œMusk says twitter is limiting number of posts users can read,ā€ New York Times, 2023. [Online]. Available: https://www.nytimes.com/2023/07/01/business/twitter-rate-limit-elon-musk.html
  101. G.Ā Support. Prevent mail to Gmail users from being blocked or sent to spam. [Online]. Available: https://support.google.com/a/answer/81126?sjid=2987346224567351299-NA
  102. Microsoft. (2023) Data loss prevention. [Online]. Available: https://www.microsoft.com/en-us/security/business/security-101/what-is-data-loss-prevention-dlp
  103. (2023) Custom instructions for chatgpt. [Online]. Available: https://openai.com/blog/custom-instructions-for-chatgpt
  104. S.Ā Petridis, B.Ā Wedin, J.Ā Wexler, A.Ā Donsbach, M.Ā Pushkarna, N.Ā Goyal, C.Ā J. Cai, and M.Ā Terry, ā€œConstitutionmaker: Interactively critiquing large language models by converting feedback into principles,ā€ arXiv preprint arXiv:2310.15428, 2023.
  105. M.Ā Jakobsson, K.Ā Sako, and R.Ā Impagliazzo, ā€œDesignated verifier proofs and their applications,ā€ in In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques.Ā Ā Ā Springer, 1996, pp. 143–154.
  106. J.Ā Lanier, ā€œHow to fix Twitter - and all of social media,ā€ Retreived from https://www.theatlantic.com/technology/archive/2022/05/how-to-fix-twitter-social-media/629951/, 2022.
  107. L.Ā Ouyang, J.Ā Wu, X.Ā Jiang, D.Ā Almeida, C.Ā Wainwright, P.Ā Mishkin, C.Ā Zhang, S.Ā Agarwal, K.Ā Slama, A.Ā Ray etĀ al., ā€œTraining language models to follow instructions with human feedback,ā€ Advances in Neural Information Processing Systems, vol.Ā 35, pp. 27 730–27 744, 2022.
  108. Y.Ā Bai, S.Ā Kadavath, S.Ā Kundu, A.Ā Askell, J.Ā Kernion, A.Ā Jones, A.Ā Chen, A.Ā Goldie, A.Ā Mirhoseini, C.Ā McKinnon etĀ al., ā€œConstitutional AI: Harmlessness from AI feedback,ā€ arXiv preprint arXiv:2212.08073, 2022.
  109. F.Ā Khani and M.Ā T. Ribeiro, ā€œCollaborative development of NLP models,ā€ arXiv preprint arXiv:2305.12219, 2023.
  110. H.Ā Touvron, L.Ā Martin, K.Ā Stone, P.Ā Albert, A.Ā Almahairi, Y.Ā Babaei, N.Ā Bashlykov, S.Ā Batra, P.Ā Bhargava, S.Ā Bhosale etĀ al., ā€œLlama 2: Open foundation and fine-tuned chat models,ā€ arXiv preprint arXiv:2307.09288, 2023.
  111. Y.Ā Li, S.Ā Bubeck, R.Ā Eldan, A.Ā DelĀ Giorno, S.Ā Gunasekar, and Y.Ā T. Lee, ā€œTextbooks are all you need II: phi-1.5 technical report,ā€ arXiv preprint arXiv:2309.05463, 2023.
  112. C.Ā Xu, Q.Ā Sun, K.Ā Zheng, X.Ā Geng, P.Ā Zhao, J.Ā Feng, C.Ā Tao, and D.Ā Jiang, ā€œWizardlm: Empowering large language models to follow complex instructions,ā€ arXiv preprint arXiv:2304.12244, 2023.
  113. Salesforce. (2023) Xgen. [Online]. Available: https://github.com/salesforce/xgen
  114. Falcon LLM Team. (2023) Falcon LLM. [Online]. Available: https://falconllm.tii.ae/
  115. (2023) Who’s Harry Potter? Making LLMs forget. Accessed: September 26, 2023. [Online]. Available: https://www.microsoft.com/en-us/research/project/physics-of-agi/articles/whos-harry-potter-making-llms-forget-2/
  116. D.Ā Choi, Y.Ā Shavit, and D.Ā Duvenaud, ā€œTools for verifying neural models’ training data,ā€ arXiv preprint arXiv:2307.00682, 2023.
  117. S.Ā Longpre, R.Ā Mahari, N.Ā Muennighoff, A.Ā Chen, K.Ā Perisetla, W.Ā Brannon, J.Ā Kabbara, L.Ā Villa, and S.Ā Hooker, ā€œThe data provenance project,ā€ in Proceedings of the 40th International Conference on Machine Learning, 2023.
  118. T.Ā Hardjono and A.Ā Pentland, ā€œData cooperatives: Towards a foundation for decentralized personal data management,ā€ arXiv preprint arXiv:1905.08819, 2019.
  119. K.Ā Schwab, A.Ā Marcus, J.Ā Oyola, W.Ā Hoffman, and M.Ā Luzi, ā€œPersonal data: The emergence of a new asset class,ā€ in An Initiative of the World Economic Forum.Ā Ā Ā World Economic Forum Cologny, Switzerland, 2011, pp. 1–40.
  120. (2023) Data freedom act. RadicalxChange. [Online]. Available: https://www.radicalxchange.org/media/papers/data-freedom-act.pdf
  121. P.Ā W. Koh and P.Ā Liang, ā€œUnderstanding black-box predictions via influence functions,ā€ in International conference on machine learning.Ā Ā Ā PMLR, 2017, pp. 1885–1894.
  122. V.Ā Feldman and C.Ā Zhang, ā€œWhat neural networks memorize and why: Discovering the long tail via influence estimation,ā€ Advances in Neural Information Processing Systems, vol.Ā 33, pp. 2881–2891, 2020.
  123. R.Ā Grosse, J.Ā Bae, C.Ā Anil, N.Ā Elhage, A.Ā Tamkin, A.Ā Tajdini, B.Ā Steiner, D.Ā Li, E.Ā Durmus, E.Ā Perez etĀ al., ā€œStudying large language model generalization with influence functions,ā€ arXiv preprint arXiv:2308.03296, 2023.
  124. S.Ā M. Park, K.Ā Georgiev, A.Ā Ilyas, G.Ā Leclerc, and A.Ā Madry, ā€œTrak: Attributing model behavior at scale,ā€ arXiv preprint arXiv:2303.14186, 2023.
  125. A.Ā Ilyas, S.Ā M. Park, L.Ā Engstrom, G.Ā Leclerc, and A.Ā Madry, ā€œDatamodels: Predicting predictions from training data,ā€ in Proceedings of the 39th International Conference on Machine Learning, 2022.
  126. A.Ā Ghorbani and J.Ā Zou, ā€œData Shapley: Equitable valuation of data for machine learning,ā€ in Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 2242–2251.
  127. R.Ā Jia, D.Ā Dao, B.Ā Wang, F.Ā A. Hubis, N.Ā Hynes, N.Ā M. Gürel, B.Ā Li, C.Ā Zhang, D.Ā Song, and C.Ā J. Spanos, ā€œTowards efficient data valuation based on the Shapley value,ā€ in The 22nd International Conference on Artificial Intelligence and Statistics.Ā Ā Ā PMLR, 2019, pp. 1167–1176.
  128. Z.Ā Hammoudeh and D.Ā Lowd, ā€œTraining data influence analysis and estimation: A survey,ā€ arXiv preprint arXiv:2212.04612, 2022.
  129. D.Ā Bogdanov, P.Ā Laud, S.Ā Laur, and P.Ā Pullonen, ā€œFrom input private to universally composable secure multi-party computation primitives,ā€ in 2014 IEEE 27th Computer Security Foundations Symposium.Ā Ā Ā IEEE, 2014, pp. 184–198.
  130. C.Ā Dwork, ā€œDifferential privacy,ā€ in International colloquium on automata, languages, and programming.Ā Ā Ā Springer, 2006, pp. 1–12.
  131. M.Ā Abadi, A.Ā Chu, I.Ā Goodfellow, H.Ā B. McMahan, I.Ā Mironov, K.Ā Talwar, and L.Ā Zhang, ā€œDeep learning with differential privacy,ā€ in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
  132. A.Ā Shamir, ā€œHow to share a secret,ā€ Communications of the ACM, vol.Ā 22, no.Ā 11, pp. 612–613, 1979.
  133. M.Ā Sabt, M.Ā Achemlal, and A.Ā Bouabdallah, ā€œTrusted execution environment: what it is, and what it is not,ā€ in 2015 IEEE Trustcom/BigDataSE/Ispa, vol.Ā 1.Ā Ā Ā IEEE, 2015, pp. 57–64.
  134. B.Ā McMahan, E.Ā Moore, D.Ā Ramage, S.Ā Hampson, and B.Ā A. yĀ Arcas, ā€œCommunication-efficient learning of deep networks from decentralized data,ā€ in Artificial intelligence and statistics.Ā Ā Ā PMLR, 2017, pp. 1273–1282.
  135. L.Ā Ho, J.Ā Barnhart, R.Ā Trager, Y.Ā Bengio, M.Ā Brundage, A.Ā Carnegie, R.Ā Chowdhury, A.Ā Dafoe, G.Ā Hadfield, M.Ā Levi etĀ al., ā€œInternational institutions for advanced AI,ā€ arXiv preprint arXiv:2307.04699, 2023.
  136. J.Ā Schuett, N.Ā Dreksler, M.Ā Anderljung, D.Ā McCaffary, L.Ā Heim, E.Ā Bluemke, and B.Ā Garfinkel, ā€œTowards best practices in agi safety and governance: A survey of expert opinion,ā€ arXiv preprint arXiv:2305.07153, 2023.
  137. The White House. (2023) Fact sheet: Biden-Harris administration secures voluntary commitments from leading artificial intelligence companies to manage the risks posed by AI. [Online]. Available: https://www.whitehouse.gov/briefing-room/statements-releases/2023/07/21/fact-sheet-biden-harris-administration-secures-voluntary-commitments-from-leading-artificial-intelligence
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.