Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Search for an exotic decay of the Higgs boson into a Z boson and a pseudoscalar particle in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2311.00130v2)

Published 31 Oct 2023 in hep-ex

Abstract: A search for an exotic decay of the Higgs boson to a Z boson and a light pseudoscalar particle (a), decaying to a pair of leptons and a pair of photons, respectively, is presented. The search is based on proton-proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, collected with the CMS detector and corresponding to an integrated luminosity of 138 fb${-1}$. The analysis probes pseudoscalar masses $m_\mathrm{a}$ between 1 and 30 GeV, leading to two pairs of well-isolated leptons and photons. Upper limits at 95% confidence level are set on the Higgs boson production cross section times its branching fraction to two leptons and two photons. The observed (expected) limits are in the range of 1.1-17.8 (1.7-17.9) fb within the probed $m_\mathrm{a}$ interval. An excess of data above the expected standard model background with a local (global) significance of 2.6 (1.3) standard deviations is observed for a mass hypothesis of $m_\mathrm{a}$ = 3 GeV. Limits on models involving axion-like particles, formulated as an effective field theory, are also reported.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  3. CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8TeVTeV~{}\mathrm{TeV}roman_TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
  4. ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery”, Nature 607 (2022) 52, 10.1038/s41586-022-04893-w, arXiv:2207.00092.
  5. CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.”, Nature 607 (2022) 60, 10.1038/s41586-022-04892-x, arXiv:2207.00043.
  6. R. D. Peccei and H. R. Quinn, “CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles”, Phys. Rev. Lett. 38 (1977) 1440, 10.1103/PhysRevLett.38.1440.
  7. M. A. Buen-Abad, J. Fan, M. Reece, and C. Sun, “Challenges for an axion explanation of the muon g−2𝑔2g-2italic_g - 2 measurement”, JHEP 09 (2021) 101, 10.1007/JHEP09(2021)101, arXiv:2104.03267.
  8. H. Georgi, D. B. Kaplan, and L. Randall, “Manifesting the invisible axion at low energies”, Phys. Lett. B 169 (1986) 73, 10.1016/0370-2693(86)90688-X.
  9. M. Bauer, M. Neubert, and A. Thamm, “Collider probes of axion-like particles”, JHEP 12 (2017) 044, 10.1007/JHEP12(2017)044, arXiv:1708.00443.
  10. M. Bauer, M. Neubert, and A. Thamm, “The “forgotten” decay S→Z⁢h→𝑆𝑍ℎS\to Zhitalic_S → italic_Z italic_h as a CP analyzer”, 2016. arXiv:1607.01016.
  11. ATLAS Collaboration, “Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of 13 TeV pp collisions with the ATLAS detector”, JHEP 07 (2023) 155, 10.1007/JHEP07(2023)155, arXiv:2211.04172.
  12. ATLAS Collaboration, “Search for new phenomena in events with a photon and missing transverse momentum in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 06 (2016) 059, 10.1007/JHEP06(2016)059, arXiv:1604.01306.
  13. ATLAS Collaboration, “Search for dark matter in association with an energetic photon in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 02 (2021) 226, 10.1007/JHEP02(2021)226, arXiv:2011.05259.
  14. ATLAS Collaboration, “Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of Pb+Pb data with the ATLAS detector”, JHEP 03 (2021) 243, 10.1007/JHEP11(2021)050, arXiv:2008.05355.
  15. ATLAS Collaboration, “Search for Higgs boson decays into a Z𝑍Zitalic_Z boson and a light hadronically decaying resonance using 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collision data from the ATLAS detector”, Phys. Rev. Lett. 125 (2020) 221802, 10.1103/PhysRevLett.125.221802, arXiv:2004.01678.
  16. ATLAS Collaboration, “Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS”, JHEP 07 (2023) 234, 10.1007/JHEP07(2023)234, arXiv:2304.10953.
  17. CMS Collaboration, “Search for the exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2023) 148, 10.1007/JHEP07(2023)148, arXiv:2208.01469.
  18. CMS Collaboration, “Search for exotic Higgs boson decays H →→\to→𝒜⁢𝒜𝒜𝒜\mathcal{A}\mathcal{A}caligraphic_A caligraphic_A→→\to→ 4γ𝛾\gammaitalic_γ with events containing two merged diphotons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 131 (2023) 101801, 10.1103/PhysRevLett.131.101801, arXiv:2209.06197.
  19. CMS Collaboration, “Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 82 (2022) 290, 10.1140/epjc/s10052-022-10127-0, arXiv:2111.01299.
  20. A. Abbasabadi and W. W. Repko, “Note on the rare decay of a Higgs boson into photons and a Z𝑍Zitalic_Z boson”, Phys. Rev. D 71 (2005) 017304, 10.1103/PhysRevD.71.017304.
  21. CMS Collaboration, “Reconstruction of decays to merged photons using end-to-end deep learning with domain continuation in the CMS detector”, Phys. Rev. D 108 (2023) 052002, 10.1103/PhysRevD.108.052002, arXiv:2204.12313.
  22. HEPData record for this analysis, 2023. 10.17182/hepdata.145073.
  23. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  24. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  25. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  26. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
  27. J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
  28. R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
  29. CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, Eur. Phys. J. C 74 (2014) 3076, 10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.
  30. CMS Collaboration, “Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13TeVTeV~{}\mathrm{TeV}roman_TeV”, JHEP 11 (2018) 185, 10.1007/JHEP11(2018)185, arXiv:1804.02716.
  31. NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
  32. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  33. T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  34. CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
  35. CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  36. GEANT4 Collaboration, “\GEANTfour: a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  37. J. Allison et al., “\GEANTfour developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, 10.1109/TNS.2006.869826.
  38. CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
  39. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  40. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
  41. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13TeVTeV~{}\mathrm{TeV}roman_TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  42. CMS Collaboration, “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13TeVTeV~{}\mathrm{TeV}roman_TeV”, JHEP 11 (2017) 047, 10.1007/JHEP11(2017)047, arXiv:1706.09936.
  43. CMS Collaboration, “Measurements of inclusive W𝑊Witalic_W and Z𝑍Zitalic_Z cross sections in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7TeVTeV~{}\mathrm{TeV}roman_TeV”, JHEP 01 (2011) 080, 10.1007/JHEP01(2011)080, arXiv:1012.2466.
  44. P. Baldi et al., “Parameterized neural networks for high-energy physics”, Eur. Phys. J. C 76 (2016) 235, 10.1140/epjc/s10052-016-4099-4, arXiv:1601.07913.
  45. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 11 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.
  46. J. H. Friedman, “SMART User’s Guide”, Stanford University Department of Statistics Technical Report LCS_01, 1984.
  47. J. H. Friedman, “A variable span scatterplot smoother”, Stanford University Department of Statistics Technical Report LCS_05, 1984.
  48. CMS Collaboration, “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8TeVTeV~{}\mathrm{TeV}roman_TeV”, Eur. Phys. J. C 75 (2015) 212, 10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662.
  49. R. A. Fisher, “On the interpretation of χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT from contingency tables, and the calculation of p”, J. Royal Stat. Soc 85 (1922) 87, 10.2307/2340521.
  50. P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes: the discrete profiling method”, JINST 10 (2015) P04015, 10.1088/1748-0221/10/04/P04015, arXiv:1408.6865.
  51. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV in 2015 and 2016”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  52. CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13⁢TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV”, CMS Physics Analysis Summary, CMS-PAS-LUM-17-004, 2018.
  53. CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13⁢TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV”, CMS Physics Analysis Summary, CMS-PAS-LUM-18-002, 2019.
  54. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  55. A. L. Read, “Presentation of search results: the \CLs technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
  56. ATLAS and CMS Collaborations, and LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
  57. E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy physics”, Eur. Phys. J. C 70 (2010) 525, 10.1140/epjc/s10052-010-1470-8, arXiv:1005.1891.
  58. CMS Collaboration, “A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{Te}\text{V}square-root start_ARG italic_s end_ARG = 13 roman_Te roman_V”, Eur. Phys. J. C 83 (2023) 933, 10.1140/epjc/s10052-023-11952-7, arXiv:2303.01214.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 25 likes.

Upgrade to Pro to view all of the tweets about this paper: