Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Statistical Complexity of Heterogeneous Geometric Networks (2310.20354v3)

Published 31 Oct 2023 in cs.SI

Abstract: Degree heterogeneity and latent geometry, also referred to as popularity and similarity, are key explanatory components underlying the structure of real-world networks. The relationship between these components and the statistical complexity of networks is not well understood. We introduce a parsimonious normalised measure of statistical complexity for networks. The measure is trivially 0 in regular graphs and we prove that this measure tends to 0 in Erd\"os-R\'enyi random graphs in the thermodynamic limit. We go on to demonstrate that greater complexity arises from the combination of heterogeneous and geometric components to the network structure than either on their own. Further, the levels of complexity achieved are similar to those found in many real-world networks. However, we also find that real-world networks establish connections in a way which increases complexity and which our null models fail to explain. We study this using ten link growth mechanisms and find that only one mechanism successfully and consistently replicates this phenomenon -- probabilities proportional to the exponential of the number of common neighbours between two nodes. Common neighbours is a mechanism which implicitly accounts for degree heterogeneity and latent geometry. This explains how a simple mechanism facilitates the growth of statistical complexity in real-world networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Hartmanis and J. E. Hopcroft, “An overview of the theory of computational complexity,” Journal of the ACM (JACM), vol. 18, no. 3, pp. 444–475, 1971.
  2. A. Kolmogorov, “On tables of random numbers,” Theoretical Computer Science, vol. 207, no. 2, pp. 387–395, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304397598000759
  3. G. J. Chaitin, A. Arslanov, and C. Calude, “Program-size complexity computes the halting problem,” Department of Computer Science, The University of Auckland, New Zealand, Tech. Rep., 1995.
  4. B. Huberman and T. Hogg, “Complexity and adaptation,” Physica D: Nonlinear Phenomena, vol. 22, no. 1, pp. 376–384, 1986, proceedings of the Fifth Annual International Conference. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0167278986903081
  5. D. P. Feldman and J. P. Crutchfield, “Measures of statistical complexity: Why?” Physics Letters A, vol. 238, no. 4, pp. 244–252, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0375960197008554
  6. M. Morzy, T. Kajdanowicz, and P. Kazienko, “On measuring the complexity of networks: Kolmogorov complexity versus entropy,” Complexity, p. 3250301, 2017.
  7. H. Zenil, H. Kiani, and J. Tegnér, “A review of graph and network complexity from an algorithmic information perspective,” Entropy, vol. 20, no. 8, p. 551, 2018.
  8. F. Emmert-Streib and M. Dehmer, “Exploring statistical and population aspects of network complexity,” PLOS ONE, vol. 7, no. 5, pp. 1–17, 05 2012. [Online]. Available: https://doi.org/10.1371/journal.pone.0034523
  9. M. Wiedermann, J. F. Donges, J. Kurths, and R. V. Donner, “Mapping and discrimination of networks in the complexity-entropy plane,” Phys. Rev. E, vol. 96, p. 042304, Oct 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.96.042304
  10. K. Smith and J. Escudero, “The complex hierarchical topology of EEG functional connectivity,” Journal of Neuroscience Methods, vol. 276, pp. 1–12, 2017.
  11. K. M. Smith, M. E. Bastin, S. R. Cox, M. C. Valdés Hernández, S. Wiseman, J. Escudero, and C. Sudlow, “Hierarchical complexity of the adult human structural connectome,” Neuroimage, vol. 191, pp. 205–215, 2019.
  12. M. Blesa, P. Galdi, S. Cox, G. Sullivan, D. Stoye, G. Lamb, A. Quigley, M. Thrippleton, J. Escudero, M. Bastin, K. Smith, and J. Boardman, “Hierarchical complexity of the macro-scale neonatal brain,” Cerebral Cortex, vol. 31, no. 4, pp. 2071–2084, 2021.
  13. M. C. Valdés Hernández, K. M. Smith, M. E. Bastin, E. N. Amft, S. H. Ralston, J. M. Wardlaw, and S. J. Wiseman, “Brain network reorganisation and spatial lesion distribution in systemic lupus erythematosus,” Lupus, vol. 30, no. 2, pp. 285–298, 2021.
  14. K. M. Smith, J. M. Starr, J. Escudero, A. Ibãnez, and M. A. Parra, “Abnormal functional hierarchies of eeg networks in familial and sporadic prodromal alzheimer’s disease during visual short-term memory binding,” Frontiers in Neuroimaging, vol. 1, p. 883968, 2022.
  15. K. M. Smith, “On neighbourhood degree sequences of complex networks,” Scientific Reports, vol. 9, p. 8340, 2019.
  16. G. Caldarelli, A. Capocci, P. De Los Rios, and M. Munoz, “Scale-free networks from varying vertex intrinsic fitness,” Physical Review Letters, vol. 89, p. 258702, 2002.
  17. F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguna, and D. Krioukov, “Popularity versus similarity in growing networks,” Nature, vol. 489, pp. 537–540, 2012.
  18. P. Hoff, A. Raferty, and M. Handcock, “Latent space approaches to social network analysis,” Journal of the American Statistical Association, vol. 97, pp. 1090–1098, 2002.
  19. A. Smith, D. Asta, and C. Calder, “The geometry of continuous latent space models for network data,” Statistical Science, vol. 34, no. 3, pp. 428–453, 2019.
  20. K. Smith, “Explaining the emergence of complex networks through log-normal fitness in a euclidean node similarity space,” Scientific Reports, vol. 11, p. 1976, 2021.
  21. K. Smith and J. Escudero, “Normalised degree variance,” Applied Network Science, vol. 5, p. 32, 2020.
  22. B. Alarfaj, C. Taylor, and L. Bogachev, “The joint node degree distribution in the Erdös-Rényi network,” 2023.
  23. H. Nagaraja, “Order statistics from discrete distributions,” Statistics, vol. 23, no. 3, pp. 189–216, 1992.
  24. A. Strecok, “On the calculation of the inverse of the error function,” Mathematics of Computation, vol. 22, no. 101, pp. 144–158, 1968.
  25. M. T. A. Antonioni, “Degree correlations in random geometric graphs,” Physical Review E, vol. 86, p. 037101, 2012.
  26. P. Erdös and A. Rényi, “On random graphs,” Pubilcationes Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.
  27. J. Dall and M. Christensen, “Random geometric graphs,” Physical Review E, vol. 66, p. 016121, 2002.
  28. S. Maslov and K. Sneppen, “Specificity and stability in topology of protein networks,” Science, vol. 296, no. 5569, pp. 910–913, 2002.
  29. J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.stanford.edu/data, Jun. 2014.
  30. R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and visualization,” in AAAI, 2015. [Online]. Available: https://networkrepository.com
  31. A. Cho, J. Shin, S. Hwang, C. Kim, H. Shim, H. Kim, H. Kim, and I. Lee, “Wormnet v3: a network-assisted hypothesis-generating server for caenorhabditis elegans,” Nucleic acids research, vol. 42, no. W1, pp. W76–W82, 2014.
  32. D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.
  33. T. Opsahl, “Why anchorage is not (that) important: Binary ties and sample selection,” 2011. [Online]. Available: https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection
  34. B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,” 2019.
  35. B. Rozemberczki and R. Sarkar, “Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models,” in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20).   ACM, 2020, p. 1325–1334.
  36. Y. N. Billeh, B. Cai, S. L. Gratiy, K. Dai, R. Iyer, N. W. Gouwens, R. Abbasi-Asl, X. Jia, J. H. Siegle, S. R. Olsen et al., “Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex,” Neuron, vol. 106, no. 3, pp. 388–403, 2020.
  37. “Models of the mouse primary visual cortex,” https://portal.brain-map.org/explore/models/mv1-all-layers, accessed: 2023-06-05.
  38. A. Ghasemian, H. Hosseinmardi, and A. Clauset, “Evaluating overfit and underfit in models of network community structure,” IEEE Transactions on Knowledge and Data Engineering, 2019, in press. [Online]. Available: doi:10.1109/TKDE.2019.2911585
  39. D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bogñá, “Hyperbolic geometry of complex networks,” Physical Review E, vol. 82, p. 036106, 2010.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.