Cosmological Constraints on 4-Dimensional Einstein-Gauss-Bonnet Gravity
Abstract: 4-Dimensional Einstein-Gauss-Bonnet (4DEGB) gravity has garnered significant attention in the last few years as a phenomenological competitor to general relativity. We consider the theoretical and observational implications of this theory in both the early and late universe, (re-)deriving background and perturbation equations and constraining its characteristic parameters with data from cosmological probes. Our investigation surpasses the scope of previous studies by incorporating non-flat spatial sections. We explore consequences of 4DEGB on the sound and particle horizons in the very early universe, and demonstrate that 4DEGB can provide an independent solution to the horizon problem for some values of its characteristic parameter $\alpha$. Finally, we constrain an unexplored regime of this theory in the limit of small coupling $\alpha$ (empirically supported in the post-Big Bang Nucleosynthesis era by prior constraints). This version of 4DEGB includes a geometric term that resembles dark radiation at the background level, but whose influence on the perturbed equations is qualitatively distinct from that of standard forms of dark radiation. In this limit, only one beyond-$\Lambda$CDM degree of freedom persists, which we denote as $\tilde{\alpha}_C$. Our analysis yields the estimate $\tilde{\alpha}_C = (-9 \pm 6) \times 10{-6}$ thereby providing a new constraint of a previously untested sector of 4DEGB.
- Clifford M. Will. The confrontation between general relativity and experiment. Living Reviews in Relativity, 17(1), jun 2014. doi: 10.12942/lrr-2014-4. URL https://doi.org/10.12942%2Flrr-2014-4.
- Eleonora Di Valentino et al. Cosmology intertwined III: fσ𝜎\sigmaitalic_σ8 and S8. Astroparticle Physics, 131:102604, sep 2021. doi: 10.1016/j.astropartphys.2021.102604.
- Hubble tension: The evidence of new physics, 2023.
- Modified gravity and cosmology. Physics Reports, 513(1-3):1–189, mar 2012. doi: 10.1016/j.physrep.2012.01.001. URL https://doi.org/10.1016%2Fj.physrep.2012.01.001.
- D. Lovelock. The Einstein tensor and its generalizations. J. Math. Phys., 12:498–501, 1971. doi: 10.1063/1.1665613.
- D. Lovelock. The four-dimensionality of space and the einstein tensor. J. Math. Phys., 13:874–876, 1972. doi: 10.1063/1.1666069.
- Cornelius Lanczos. A Remarkable property of the Riemann-Christoffel tensor in four dimensions. Annals Math., 39:842–850, 1938. doi: 10.2307/1968467.
- Draž en Glavan and Chunshan Lin. Einstein-gauss-bonnet gravity in four-dimensional spacetime. Physical Review Letters, 124(8), feb 2020. doi: 10.1103/physrevlett.124.081301. URL https://doi.org/10.1103%2Fphysrevlett.124.081301.
- Is there a novel Einstein–Gauss–Bonnet theory in four dimensions? Eur. Phys. J. C, 80(7):647, 2020. doi: 10.1140/epjc/s10052-020-8200-7.
- Wen-Yuan Ai. A note on the novel 4D Einstein–Gauss–Bonnet gravity. Commun. Theor. Phys., 72(9):095402, 2020. doi: 10.1088/1572-9494/aba242.
- Fu-Wen Shu. Vacua in novel 4D Einstein-Gauss-Bonnet Gravity: pathology and instability? Phys. Lett. B, 811:135907, 2020. doi: 10.1016/j.physletb.2020.135907.
- Observational constraints on the regularized 4d einstein-gauss-bonnet theory of gravity. Physical Review D, 102(8), oct 2020. doi: 10.1103/physrevd.102.084005. URL https://doi.org/10.1103%2Fphysrevd.102.084005.
- On taking the D → 4 limit of Gauss-Bonnet gravity: theory and solutions. Journal of High Energy Physics, 2020(7):27, July 2020. doi: 10.1007/JHEP07(2020)027.
- Derivation of Regularized Field Equations for the Einstein-Gauss-Bonnet Theory in Four Dimensions. Phys. Rev. D, 102(2):024025, 2020. doi: 10.1103/PhysRevD.102.024025.
- Gregory Walter Horndeski. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 10:363–384, 1974. doi: 10.1007/BF01807638.
- H. Lü and Yi Pang. Horndeski gravity as d→4→𝑑4d\rightarrow 4italic_d → 4 limit of gauss-bonnet. Physics Letters B, 809:135717, oct 2020. doi: 10.1016/j.physletb.2020.135717. URL https://doi.org/10.1016%2Fj.physletb.2020.135717.
- Propagation speed of gravitational wave in scalar–einstein–gauss-bonnet gravity, 2023.
- The 4d einstein–gauss–bonnet theory of gravity: a review. Classical and Quantum Gravity, 39(6):063001, feb 2022. doi: 10.1088/1361-6382/ac500a. URL https://doi.org/10.1088%2F1361-638%2Fac500a.
- Strange Quark Stars in 4D Einstein-Gauss-Bonnet Gravity. Astrophys. J., 909(1):14, 2021a. doi: 10.3847/1538-4357/abd094.
- Quark Stars in 4D Einstein–Gauss–Bonnet Gravity with an Interacting Quark Equation of State. Astrophys. J., 906(2):114, 2021b. doi: 10.3847/1538-4357/abc87f.
- Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations. Annals Phys., 430:168498, 2021a. doi: 10.1016/j.aop.2021.168498.
- Anisotropic quark stars in Einstein-Gauss-Bonnet theory. Phys. Lett. B, 819:136423, 2021b. doi: 10.1016/j.physletb.2021.136423.
- Electrically charged quark stars in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C, 82(2):180, 2022. doi: 10.1140/epjc/s10052-022-10123-4.
- Theoretical and observational constraints on regularized 4d einstein-gauss-bonnet gravity. Physical Review D, 103(6), mar 2021. doi: 10.1103/physrevd.103.064002. URL https://doi.org/10.1103%2Fphysrevd.103.064002.
- Zahra Haghani. Growth of matter density perturbations in 4d einstein–gauss–bonnet gravity. Physics of the Dark Universe, 30:100720, dec 2020. doi: 10.1016/j.dark.2020.100720. URL https://doi.org/10.1016%2Fj.dark.2020.100720.
- 4D Gauss–Bonnet gravity: Cosmological constraints, H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension and large scale structure. Physics of the Dark Universe, 32:100813, may 2021. doi: 10.1016/j.dark.2021.100813.
- Astrophysical constraints on compact objects in 4d einstein-gauss-bonnet gravity. Journal of Cosmology and Astroparticle Physics, 2022(02):033, feb 2022. doi: 10.1088/1475-7516/2022/02/033. URL https://doi.org/10.1088%2F1475-7516%2F2022%2F02%2F033.
- Cosmology and gravitational waves in consistent d→4→𝑑4d\to 4italic_d → 4 einstein-gauss-bonnet gravity, 2021.
- Black holes in 4d einstein–maxwell–gauss–bonnet gravity coupled with scalar fields. The European Physical Journal C, 81(4), apr 2021. doi: 10.1140/epjc/s10052-021-09068-x. URL https://doi.org/10.1140%2Fepjc%2Fs10052-021-09068-x.
- Causality of black holes in 4-dimensional einstein–gauss–bonnet–maxwell theory. The European Physical Journal C, 80(8), aug 2020. doi: 10.1140/epjc/s10052-020-8288-9. URL https://doi.org/10.1140%2Fepjc%2Fs10052-020-8288-9.
- Sandipan Sengupta. 4d einstein-gauss-bonnet gravity from non-einsteinian phase. Journal of Cosmology and Astroparticle Physics, 2022(02):020, feb 2022. doi: 10.1088/1475-7516/2022/02/020. URL https://doi.org/10.1088%2F1475-7516%2F2022%2F02%2F020.
- Quark Stars in 4DEGB. (work in preparation).
- The D→2→𝐷2D\to 2italic_D → 2 limit of general relativity. Classical and Quantum Gravity, 10(7):1405–1408, July 1993. doi: 10.1088/0264-9381/10/7/015.
- Tsutomu Kobayashi. Effective scalar-tensor description of regularized Lovelock gravity in four dimensions. JCAP, 07:013, 2020. doi: 10.1088/1475-7516/2020/07/013.
- Cosmological perturbations. Physics Reports, 475(1-4):1–51, may 2009. doi: 10.1016/j.physrep.2009.03.001. URL https://doi.org/10.1016%2Fj.physrep.2009.03.001.
- eBOSS Collaboration. Completed SDSS-IV extended baryon oscillation spectroscopic survey: Cosmological implications from two decades of spectroscopic surveys at the apache point observatory. Physical Review D, 103(8), apr 2021. doi: 10.1103/physrevd.103.083533. URL https://doi.org/10.1103%2Fphysrevd.103.083533.
- Robust and model-independent cosmological constraints from distance measurements. Journal of Cosmology and Astroparticle Physics, 2019(07):005–005, jul 2019. doi: 10.1088/1475-7516/2019/07/005. URL https://doi.org/10.1088%2F1475-7516%2F2019%2F07%2F005.
- Planck Collaboration. Planck 2018 results. VI.VI\text{VI}.VI . cosmological parameters. Astronomy & Astrophysics, 641:A6, sep 2020. doi: 10.1051/0004-6361/201833910. URL https://doi.org/10.1051%2F0004-6361%2F201833910.
- Miguel A. García-Aspeitia and A. Hernández-Almada. Einstein–gauss–bonnet gravity: Is it compatible with modern cosmology? Physics of the Dark Universe, 32:100799, 2021. ISSN 2212-6864. doi: https://doi.org/10.1016/j.dark.2021.100799. URL https://www.sciencedirect.com/science/article/pii/S2212686421000303.
- Gary Steigman. Primordial Nucleosynthesis in the Precision Cosmology Era. Annual Review of Nuclear and Particle Science, 57(1):463–491, nov 2007. doi: 10.1146/annurev.nucl.56.080805.140437. URL https://doi.org/10.1146%2Fannurev.nucl.56.080805.140437.
- The BAO+++BBN take on the hubble tension. Journal of Cosmology and Astroparticle Physics, 2019(10):029–029, oct 2019. doi: 10.1088/1475-7516/2019/10/029. URL https://doi.org/10.1088%2F1475-7516%2F2019%2F10%2F029.
- What is half a neutrino? reviewing cosmological constraints on neutrinos and dark radiation. Publications of the Astronomical Society of Australia, 30, 2013. doi: 10.1017/pas.2013.005. URL https://doi.org/10.1017%2Fpas.2013.005.
- DES Collaboration. Dark energy survey year 3 results: Constraints on extensions to ΛCDMΛCDM\mathrm{\Lambda}\mathrm{CDM}roman_Λ roman_CDM with weak lensing and galaxy clustering. Phys. Rev. D, 107:083504, Apr 2023. doi: 10.1103/PhysRevD.107.083504. URL https://link.aps.org/doi/10.1103/PhysRevD.107.083504.
- The atacama cosmology telescope: the polarization-sensitive actpol instrument. The Astrophysical Journal Supplement Series, 227(2):21, dec 2016. doi: 10.3847/1538-4365/227/2/21. URL https://dx.doi.org/10.3847/1538-4365/227/2/21.
- Naoshi Sugiyama. Introduction to temperature anisotropies of Cosmic Microwave Background radiation. Progress of Theoretical and Experimental Physics, 2014(6):06B101, 06 2014. ISSN 2050-3911. doi: 10.1093/ptep/ptu073. URL https://doi.org/10.1093/ptep/ptu073.
- The atacama cosmology telescope: DR4 maps and cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2020(12):047–047, dec 2020. doi: 10.1088/1475-7516/2020/12/047. URL https://doi.org/10.1088%2F1475-7516%2F2020%2F12%2F047.
- Petter Callin. How to calculate the CMB spectrum. arXiv e-prints, art. astro-ph/0606683, June 2006. doi: 10.48550/arXiv.astro-ph/0606683. URL https://ui.adsabs.harvard.edu/abs/2006astro.ph..6683C.
- Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models. The Astrophysical Journal, 538(2):473, aug 2000. doi: 10.1086/309179. URL https://dx.doi.org/10.1086/309179.
- The cosmic linear anisotropy solving system (CLASS). part II: Approximation schemes. Journal of Cosmology and Astroparticle Physics, 2011(07):034–034, jul 2011. doi: 10.1088/1475-7516/2011/07/034. URL https://doi.org/10.1088%2F1475-7516%2F2011%2F07%2F034.
- Euclid Collaboration. Euclid preparation. I. The Euclid Wide Survey. Astronomy & Astrophysics, 662:A112, June 2022. doi: 10.1051/0004-6361/202141938. URL https://ui.adsabs.harvard.edu/abs/2022A&A...662A.112E.
- Željko Ivezić et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. The Astrophysical Journal, 873(2):111, 2019. doi: 10.3847/1538-4357/ab042c. URL https://dx.doi.org/10.3847/1538-4357/ab042c.
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2. URL https://rdcu.be/b08Wh.
- Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.
- Core cosmology library: Precision cosmological predictions for LSST. The Astrophysical Journal Supplement Series, 242(1):2, may 2019. doi: 10.3847/1538-4365/ab1658. URL https://doi.org/10.3847%2F1538-4365%2Fab1658.
- Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal of Open Source Software, 1(2):24, jun 2016. doi: 10.21105/joss.00024. URL https://doi.org/10.21105/joss.00024.
- S. Dodelson and F. Schmidt. Modern Cosmology. Elsevier Science, 2020. ISBN 9780128159484. URL https://books.google.co.uk/books?id=GGjfywEACAAJ.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.