Counterfactually Probing Language Identity in Multilingual Models
Abstract: Techniques in causal analysis of LLMs illuminate how linguistic information is organized in LLMs. We use one such technique, AlterRep, a method of counterfactual probing, to explore the internal structure of multilingual models (mBERT and XLM-R). We train a linear classifier on a binary language identity task, to classify tokens between Language X and Language Y. Applying a counterfactual probing procedure, we use the classifier weights to project the embeddings into the null space and push the resulting embeddings either in the direction of Language X or Language Y. Then we evaluate on a masked language modeling task. We find that, given a template in Language X, pushing towards Language Y systematically increases the probability of Language Y words, above and beyond a third-party control language. But it does not specifically push the model towards translation-equivalent words in Language Y. Pushing towards Language X (the same direction as the template) has a minimal effect, but somewhat degrades these models. Overall, we take these results as further evidence of the rich structure of massive multilingual LLMs, which include both a language-specific and language-general component. And we show that counterfactual probing can be fruitfully applied to multilingual models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.