Constraints of internal symmetry on the non-Hermitian skin effect and bidirectional skin effect under the action of the Hermitian conjugate of time-reversal symmetry
Abstract: Non-Hermitian skin effect is a basic phenomenon in non-Hermitian system, which means that an extensive number of eigenstates can be localized at the boundary. In this Letter, we systematically investigate the constraints from all internal symmetries on the non-Hermitian skin effect in arbitrary dimensions. By adopting the powerful Amoeba formulation, we build a generic correspondence between the various internal symmetries and the behavior of the non-Hermitian skin effect. Notably, we find that, for non-Hermitian systems with the time-reversal$\dagger$ symmetry, the eigenstates can simultaneously localize at opposite boundaries, which is beyond the Amoeba formulation, and we dub the phenomenon bidirectional skin effect. Our work provides an overall perspective from the internal symmetry to the non-Hermitian skin effect.
- I. Rotter, A non-hermitian hamilton operator and the physics of open quantum systems, Journal of Physics A: Mathematical and Theoretical 42, 153001 (2009).
- H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett. 70, 2273 (1993).
- S. Malzard, C. Poli, and H. Schomerus, Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry, Phys. Rev. Lett. 115, 200402 (2015).
- A. McDonald, R. Hanai, and A. A. Clerk, Nonequilibrium stationary states of quantum non-hermitian lattice models, Phys. Rev. B 105, 064302 (2022).
- H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).
- T. E. Lee, Anomalous edge state in a non-hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016).
- S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
- S. Yao, F. Song, and Z. Wang, Non-hermitian chern bands, Phys. Rev. Lett. 121, 136802 (2018).
- K. Yokomizo and S. Murakami, Non-bloch band theory of non-hermitian systems, Phys. Rev. Lett. 123, 066404 (2019).
- K. Kawabata, N. Okuma, and M. Sato, Non-bloch band theory of non-hermitian hamiltonians in the symplectic class, Phys. Rev. B 101, 195147 (2020).
- H. Li and S. Wan, Exact formulas of the end-to-end green’s functions in non-hermitian systems, Phys. Rev. B 105, 045122 (2022a).
- K. Kawabata, K. Shiozaki, and S. Ryu, Topological field theory of non-hermitian systems, Phys. Rev. Lett. 126, 216405 (2021).
- Y. Fu and S. Wan, Degeneracy and defectiveness in non-hermitian systems with open boundary, Phys. Rev. B 105, 075420 (2022).
- H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Phys. Rev. Lett. 126, 010401 (2021).
- K. Kawabata, T. Bessho, and M. Sato, Classification of exceptional points and non-hermitian topological semimetals, Phys. Rev. Lett. 123, 066405 (2019b).
- M. Stålhammar and E. J. Bergholtz, Classification of exceptional nodal topologies protected by 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T symmetry, Phys. Rev. B 104, L201104 (2021).
- H. Hu, S. Sun, and S. Chen, Knot topology of exceptional point and non-hermitian no-go theorem, Phys. Rev. Res. 4, L022064 (2022a).
- I. Mandal and E. J. Bergholtz, Symmetry and higher-order exceptional points, Phys. Rev. Lett. 127, 186601 (2021).
- K. Yokomizo and S. Murakami, Topological semimetal phase with exceptional points in one-dimensional non-hermitian systems, Phys. Rev. Res. 2, 043045 (2020).
- F. Song, H.-Y. Wang, and Z. Wang, Non-bloch PT symmetry: Universal threshold and dimensional surprise, in A Festschrift in Honor of the C N Yang Centenary (WORLD SCIENTIFIC, 2022) pp. 299–311.
- P. Wen, J. Pi, and G. Long, Real space analysis for edge burst in a non-hermitian quantum walk model (2023), arXiv:2303.17219 [quant-ph] .
- Z.-Y. Wang, J.-S. Hong, and X.-J. Liu, Symmetric non-hermitian skin effect with emergent nonlocal correspondence, Phys. Rev. B 108, L060204 (2023).
- C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Phys. Rev. B 99, 201103 (2019).
- K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-hermitian systems, Phys. Rev. Lett. 125, 126402 (2020).
- H. Li and S. Wan, Dynamic skin effects in non-hermitian systems, Phys. Rev. B 106, L241112 (2022b).
- K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian skin effect in two and higher dimensions, Nature communications 13, 2496 (2022).
- L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Communications Physics 4, 42 (2021).
- P. Molignini, O. Arandes, and E. J. Bergholtz, Anomalous skin effects in disordered systems with a single non-hermitian impurity, Phys. Rev. Res. 5, 033058 (2023).
- Y. Fu and Y. Zhang, Hybrid skin-scale-free effect in non-hermitian systems: A transfer matrix approach (2023), arXiv:2307.16632 [cond-mat.mes-hall] .
- M. Lu, X.-X. Zhang, and M. Franz, Magnetic suppression of non-hermitian skin effects, Phys. Rev. Lett. 127, 256402 (2021).
- H.-Y. Wang, F. Song, and Z. Wang, Amoeba formulation of the non-hermitian skin effect in higher dimensions (2022), arXiv:2212.11743 [cond-mat.mes-hall] .
- H. Hu, Non-hermitian band theory in all dimensions: uniform spectra and skin effect (2023), arXiv:2306.12022 [cond-mat.mes-hall] .
- See supplemental materials at for details., .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.