Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cognitive modeling and learning with sparse binary hypervectors (2310.18316v1)

Published 16 Sep 2023 in cs.AI and cs.CL

Abstract: Following the general theoretical framework of VSA (Vector Symbolic Architecture), a cognitive model with the use of sparse binary hypervectors is proposed. In addition, learning algorithms are introduced to bootstrap the model from incoming data stream, with much improved transparency and efficiency. Mimicking human cognitive process, the training can be performed online while inference is in session. Word-level embedding is re-visited with such hypervectors, and further applications in the field of NLP (Natural Language Processing) are explored.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.