A Stability Principle for Learning under Non-Stationarity (2310.18304v5)
Abstract: We develop a versatile framework for statistical learning in non-stationary environments. In each time period, our approach applies a stability principle to select a look-back window that maximizes the utilization of historical data while keeping the cumulative bias within an acceptable range relative to the stochastic error. Our theory showcases the adaptivity of this approach to unknown non-stationarity. We prove regret bounds that are minimax optimal up to logarithmic factors when the population losses are strongly convex, or Lipschitz only. At the heart of our analysis lie two novel components: a measure of similarity between functions and a segmentation technique for dividing the non-stationary data sequence into quasi-stationary pieces. We evaluate the practical performance of our approach through real-data experiments on electricity demand prediction and hospital nurse staffing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.