Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Resource Management for Edge Network Slicing using Incremental Multi-Agent Deep Reinforcement Learning

Published 26 Oct 2023 in eess.SY and cs.SY | (2310.17523v2)

Abstract: Multi-access edge computing provides local resources in mobile networks as the essential means for meeting the demands of emerging ultra-reliable low-latency communications. At the edge, dynamic computing requests require advanced resource management for adaptive network slicing, including resource allocations, function scaling and load balancing to utilize only the necessary resources in resource-constraint networks. Recent solutions are designed for a static number of slices. Therefore, the painful process of optimization is required again with any update on the number of slices. In addition, these solutions intend to maximize instant rewards, neglecting long-term resource scheduling. Unlike these efforts, we propose an algorithmic approach based on multi-agent deep deterministic policy gradient (MADDPG) for optimizing resource management for edge network slicing. Our objective is two-fold: (i) maximizing long-term network slicing benefits in terms of delay and energy consumption, and (ii) adapting to slice number changes. Through simulations, we demonstrate that MADDPG outperforms benchmark solutions including a static slicing-based one from the literature, achieving stable and high long-term performance. Additionally, we leverage incremental learning to facilitate a dynamic number of edge slices, with enhanced performance compared to pre-trained base models. Remarkably, this approach yields superior reward performance while saving approximately 90% of training time costs.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.