Papers
Topics
Authors
Recent
2000 character limit reached

OTMatch: Improving Semi-Supervised Learning with Optimal Transport

Published 26 Oct 2023 in cs.CV | (2310.17455v2)

Abstract: Semi-supervised learning has made remarkable strides by effectively utilizing a limited amount of labeled data while capitalizing on the abundant information present in unlabeled data. However, current algorithms often prioritize aligning image predictions with specific classes generated through self-training techniques, thereby neglecting the inherent relationships that exist within these classes. In this paper, we present a new approach called OTMatch, which leverages semantic relationships among classes by employing an optimal transport loss function to match distributions. We conduct experiments on many standard vision and language datasets. The empirical results show improvements in our method above baseline, this demonstrates the effectiveness and superiority of our approach in harnessing semantic relationships to enhance learning performance in a semi-supervised setting.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.