Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state

Published 25 Oct 2023 in quant-ph, cond-mat.mes-hall, cond-mat.quant-gas, and cond-mat.stat-mech | (2310.16901v2)

Abstract: Out-of-equilibrium states of many-body systems tend to evade a description by standard statistical mechanics, and their uniqueness is epitomized by the possibility of certain long-range correlations that cannot occur in equilibrium. In quantum many-body systems, coherent correlations of this sort may lead to the emergence of remarkable entanglement structures. In this work, we analytically study the asymptotic scaling of quantum correlation measures -- the mutual information and the fermionic negativity -- within the zero-temperature steady state of voltage-biased free fermions on a one-dimensional lattice containing a noninteracting impurity. Previously, we have shown that two subsystems on opposite sides of the impurity exhibit volume-law entanglement, which is independent of the absolute distances of the subsystems from the impurity. Here we go beyond that result and derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures, in excellent agreement with numerical calculations. In particular, the logarithmic term of the mutual information asymptotics can be encapsulated in a concise formula, depending only on simple four-point ratios of subsystem length-scales and on the impurity scattering probabilities at the Fermi energies. This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system. To compute these exact results, we devise a hybrid method that relies on Toeplitz determinant asymptotics for correlation matrices in both real space and momentum space, successfully circumventing the inhomogeneity of the system. This method can potentially find wider use for analytical calculations of entanglement measures in similar scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics (Cambridge University Press, 1996).
  2. S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
  3. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015).
  4. B. Derrida, Non-equilibrium steady states: fluctuations and large deviations of the density and of the current, Journal of Statistical Mechanics: Theory and Experiment 2007, P07023 (2007).
  5. D. Bernard and T. Jin, Open quantum symmetric simple exclusion process, Phys. Rev. Lett. 123, 080601 (2019).
  6. N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646, 1 (2016).
  7. V. Eisler and Z. Zimborás, Area-law violation for the mutual information in a nonequilibrium steady state, Phys. Rev. A 89, 032321 (2014).
  8. V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of equilibrium, New Journal of Physics 16, 123020 (2014).
  9. P. Ribeiro, Steady-state properties of a nonequilibrium Fermi gas, Phys. Rev. B 96, 054302 (2017).
  10. M. J. Gullans and D. A. Huse, Localization as an entanglement phase transition in boundary-driven Anderson models, Phys. Rev. Lett. 123, 110601 (2019a).
  11. M. J. Gullans and D. A. Huse, Entanglement structure of current-driven diffusive fermion systems, Phys. Rev. X 9, 021007 (2019b).
  12. V. Alba and F. Carollo, Spreading of correlations in Markovian open quantum systems, Phys. Rev. B 103, L020302 (2021).
  13. F. Carollo and V. Alba, Dissipative quasiparticle picture for quadratic Markovian open quantum systems, Phys. Rev. B 105, 144305 (2022).
  14. S. Fraenkel and M. Goldstein, Entanglement measures in a nonequilibrium steady state: Exact results in one dimension, SciPost Phys. 11, 85 (2021).
  15. V. Alba, Unbounded entanglement production via a dissipative impurity, SciPost Phys. 12, 11 (2022).
  16. V. Alba and F. Carollo, Logarithmic negativity in out-of-equilibrium open free-fermion chains: An exactly solvable case, SciPost Phys. 15, 124 (2023).
  17. S. Murciano, P. Calabrese, and V. Alba, Symmetry-resolved entanglement in fermionic systems with dissipation, Journal of Statistical Mechanics: Theory and Experiment 2023, 113102 (2023).
  18. D. Bernard and L. Hruza, Exact entanglement in the driven quantum symmetric simple exclusion process, SciPost Phys. 15, 175 (2023).
  19. T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A 66, 032110 (2002).
  20. H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
  21. V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proceedings of the National Academy of Sciences 114, 7947 (2017).
  22. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  23. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
  24. M. M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett. 96, 010404 (2006).
  25. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
  26. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  27. H. Saleur, P. Schmitteckert, and R. Vasseur, Entanglement in quantum impurity problems is nonperturbative, Phys. Rev. B 88, 085413 (2013).
  28. A. Roy and H. Saleur, Entanglement entropy in the Ising model with topological defects, Phys. Rev. Lett. 128, 090603 (2022).
  29. M. Mintchev, D. Pontello, and E. Tonni, Entanglement entropies of an interval in the free Schrödinger field theory on the half line, Journal of High Energy Physics 2022, 90 (2022).
  30. L. Capizzi, S. Murciano, and P. Calabrese, Full counting statistics and symmetry resolved entanglement for free conformal theories with interface defects, Journal of Statistical Mechanics: Theory and Experiment 2023, 073102 (2023a).
  31. V. Eisler and I. Peschel, On entanglement evolution across defects in critical chains, EPL (Europhysics Letters) 99, 20001 (2012).
  32. M. Ljubotina, S. Sotiriadis, and T. Prosen, Non-equilibrium quantum transport in presence of a defect: the non-interacting case, SciPost Phys. 6, 004 (2019).
  33. M. Gruber and V. Eisler, Time evolution of entanglement negativity across a defect, Journal of Physics A: Mathematical and Theoretical 53, 205301 (2020).
  34. G. Gouraud, P. Le Doussal, and G. Schehr, Stationary time correlations for fermions after a quench in the presence of an impurity, Europhysics Letters 142, 41001 (2023).
  35. L. Capizzi and V. Eisler, Entanglement evolution after a global quench across a conformal defect, SciPost Phys. 14, 070 (2023).
  36. C. Rylands and P. Calabrese, Transport and entanglement across integrable impurities from generalized hydrodynamics, Phys. Rev. Lett. 131, 156303 (2023).
  37. S. Fraenkel and M. Goldstein, Extensive long-range entanglement in a nonequilibrium steady state, SciPost Phys. 15, 134 (2023).
  38. S. Paul, P. Titum, and M. F. Maghrebi, Hidden quantum criticality and entanglement in quench dynamics (2022), arXiv:2202.04654 [cond-mat.quant-gas] .
  39. P. M. Tam, M. Claassen, and C. L. Kane, Topological multipartite entanglement in a Fermi liquid, Phys. Rev. X 12, 031022 (2022).
  40. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical 42, 504005 (2009).
  41. B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture, Journal of Statistical Physics 116, 79 (2004).
  42. D. A. Abanin and E. Demler, Measuring entanglement entropy of a generic many-body system with a quantum switch, Phys. Rev. Lett. 109, 020504 (2012).
  43. P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78, 032329 (2008).
  44. H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017).
  45. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  46. M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
  47. J. Eisert, V. Eisler, and Z. Zimborás, Entanglement negativity bounds for fermionic Gaussian states, Phys. Rev. B 97, 165123 (2018).
  48. P. Ruggiero, V. Alba, and P. Calabrese, Negativity spectrum of one-dimensional conformal field theories, Phys. Rev. B 94, 195121 (2016).
  49. E. Merzbacher, Quantum Mechanics (Wiley, 1998) pp. 80–115.
  50. R. G. Newton, Inverse scattering by a local impurity in a periodic potential in one dimension, Journal of Mathematical Physics 24, 2152 (1983).
  51. I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
  52. H. Shapourian and S. Ryu, Finite-temperature entanglement negativity of free fermions, Journal of Statistical Mechanics: Theory and Experiment 2019, 043106 (2019b).
  53. P. Calabrese, J. Cardy, and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, Journal of Statistical Mechanics: Theory and Experiment 2009, P11001 (2009).
  54. R. Wong, Asymptotic Approximations of Integrals (SIAM, 2001) pp. 477–515.
  55. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).
  56. B. Swingle, Entanglement entropy and the Fermi surface, Phys. Rev. Lett. 105, 050502 (2010).
  57. M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120, 200602 (2018).
  58. E. Cornfeld, M. Goldstein, and E. Sela, Imbalance entanglement: Symmetry decomposition of negativity, Phys. Rev. A 98, 032302 (2018).
  59. N. Feldman and M. Goldstein, Dynamics of charge-resolved entanglement after a local quench, Phys. Rev. B 100, 235146 (2019).
  60. R. Bonsignori, P. Ruggiero, and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, Journal of Physics A: Mathematical and Theoretical 52, 475302 (2019).
  61. S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: exact results in 1D and beyond, Journal of Statistical Mechanics: Theory and Experiment 2020, 033106 (2020).
  62. S. Murciano, G. Di Giulio, and P. Calabrese, Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach, SciPost Phys. 8, 46 (2020).
  63. L. Capizzi, P. Ruggiero, and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, Journal of Statistical Mechanics: Theory and Experiment 2020, 073101 (2020).
  64. B. Estienne, Y. Ikhlef, and A. Morin-Duchesne, Finite-size corrections in critical symmetry-resolved entanglement, SciPost Phys. 10, 54 (2021).
  65. S. Zhao, C. Northe, and R. Meyer, Symmetry-resolved entanglement in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT coupled to U⁢(1)𝑈1{U(1)}italic_U ( 1 ) Chern-Simons theory, Journal of High Energy Physics 2021, 30 (2021).
  66. I. Klich and L. Levitov, Many-body entanglement: a new application of the full counting statistics, AIP Conference Proceedings 1134, 36 (2009).
  67. S. Fraenkel and M. Goldstein, Extensive long-range entanglement at finite temperatures from a nonequilibrium bias, in preparation.
  68. A. Bastianello, Lack of thermalization for integrability-breaking impurities, Europhysics Letters 125, 20001 (2019).
Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.