Exact solutions for radiative transfer with partial frequency redistribution
Abstract: The construction of exact solutions for radiative transfer in a plane-parallel medium has been addressed by Hemsch and Ferziger in 1972 for a partial frequency redistribution model of the formation of spectral lines consisting in a linear combination of frequency coherent and fully incoherent scattering. The method of solution is based on an eigenfunction expansion of the radiation field, leading to two singular integral equations with a Cauchy-type kernel, that have to be solved one after the other. We reconsider this problem, using as starting point the integral formulation of the radiative transfer equation, where the terms involving the coupling between the two scattering mechanisms are clearly displayed, as well as the primary source of photons. With an inverse Laplace transform, we recover the singular integral equations previously established and with Hilbert transforms, as in the previous work, recast them as boundary value problems in the complex plane. Their solutions are presented in detail for an infinite and a semi-infinite medium. The coupling terms are carefully analyzed and consistency with either the coherent or the incoherent limit is systematically checked. We recover the important results of the previous work that an exact solution exists for an infinite medium, whereas for a semi-infinite medium, which requires the introduction of half-space auxiliary functions, the solution is given by a Fredholm integral equation to be solved numerically. The solutions of the singular integral equations are used to construct explicit expressions providing the radiation field for an arbitrary primary source and for the Green function. An explicit expression is given for the radiation field emerging from a semi-infinite medium.
- Ambarzumian Viktor A. 1942. “On the scattering of light by planetary atmospheres”. Astronomical Journal of the Soviet Union 19 : 30–41
- Ambarzumian Viktor A. 1943 “Diffuse reflection of light by a foggy medium”. Dokl. Akad. Nauk. SSSR. 38 : 257–261
- Avrett, Eugene H., and Hummer, David G. 1965. “Non-coherent scattering II; Line Formation with a Frequency Independent Source Function”. Monthly Notices Roy. Astronomical Soc. 130 : 295–331
- Barichello, Liliane, and Siewert, Charles. 1998. “The FNsubscript𝐹𝑁F_{N}italic_F start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT Method for spectral-line formation by completely noncoherent scattering”. J. Quant. Spectrosc. Radiat. Transfer. 60 : 261–276
- Barichello, Liliane, and Siewert, Charles. 1999. “A discrete-ordinate solution for non-grey model with complete frequency redistribution”.Journal of Quantitative Spectroscopy and Radiative Transfer 62 : 665–675
- Barichello, Liliane, and Siewert, Charles. 1999. “A discrete-ordinate solution for a polarization model with complete frequency redistribution”.The Astrophysical Journa 513 : 370–382
- Carleman, Torsten. 1922. “Sur la résolution de certaines équations intégrales.” Arkiv för Matematik Astronomi och Fysik 16 : 1–19
- Case, Kenneth M. : 1960, “Elementary solutions of the transport equation and their applications.” Annals of Physics (New York) 9 : 1–23
- Chandrasekhar, Subrahmanyan. 1946. “On the radiative equilibrium of a stellar atmosphere. X. The Astrophysical Journal 103 : 351–370
- Corngold, Noel, and Durgin, Kanat. 1967. “Analysis of pulsed-neutron experiments in moderators via a simple model.” Nuclear Science and Engineering 29 : 354–366
- Faurobert, Marianne. 1988. “Linear polarization of resonance lines in the absence of magnetic fields II Semi-infinite atmospheres.” Astronomy and Astrophysics 194 : 268–278
- Frisch, Hélène. 1980. “Non-LTE transfer V. The asymptotics of partial redistribution.” Astronomy and Astrophysics 83 : 166-183
- Frisch, Hélène. 1988. “A Cauchy integral equation method for analytic solutions of half-space convolution equations.” Journal of Quantitative Spectroscopy and Radiative Transfer 39 : 149–162
- Frisch, Hélène, and Frisch, Uriel. 1982. “A method of Cauchy integral equations for non-coherent transfer in half-space.” Journal of Quantitative Spectroscopy and Radiative Transfer 28 : 361–375
- Gakhov, Fyodor D. 1966. Boundary Value Problems. Trans. I.N. Sneddon. London : Pergamon Press. 1963. Boundary problems. 2nd Russian edition. Moscow : Fizmatgiz
- Halpern, Otto, Lueneburg, Rudolf, and Clark, O.. 1938. “On Multiple sacttering of Neutrons. I. Theory of the Albedo of a Plane Boundary.”Physical Review 53 : 173–183
- Hemsch, Michael. J. 1971. “Linear transport theory with partly incoherent scattering.” PhD diss., Stanford University
- Hemsch, Michael J., and Ferziger, Joel H. 1972. “Radiative transfer with partially coherent scattering.” Journal of Quantitative Spectroscopy and Radiative Transfer 12 : 1029–1046
- Hummer, David G. 1962. “Non-coherent scattering I. The redistribution functions with Doppler broadening.” Monthly Notices of the Royal astronomical Society 125 : 21–37
- Hummer, David G. 1969. “Non-coherent scattering VI. Solutions of the Transfer Problem with a Frequency-dependent Source Function”. Monthly Notices of the Royal astronomical Society 145 : 95-120
- Ivanov, Vsevolod V. 1973. Transfer of Radiation in Spectral Lines. Trans. G. Hummer and E. Weppner. NBS Spec. Publ. 385. Washington DC : Washington Governement Printing Office. 1969. Radiative Transfer and the Spectra of Celestial Bodies. Moscow : Nauka
- Ivanov, Vsevolod V. 1994. “Resolvent method : exact solutions of half-space transport problems by elementary means.” Astronomy and Astrophysics 286 : 328–337
- Jefferies, John T, and White, Oran R. 1960. “Source function in a non-equilibirum Atmosphere. VI. The Frequency Dependence of the Source Function for Resonance Lines”. The Astrophysical Journal 132 : 767–774
- Kneer, Franz. 1975. “Comments on the redistribution Function of Jefferies and White”. The Astrophysical Journal 200 : 367–368
- Krein, Mark G. 1962. “Integral Equations on a half-line with kernels depending upon the difference of the arguments.” American Mathematical Society Translation Series. 2 22 : 163–288. 1958. Russian original Uspekhi. Mat. Nauk. 13 : 3–120
- Lawrie, Jane B. and Abrahams, David, I. 2007. “A brief historical perspective of the Wiener–Hopf technique”. Journal of Engineerign Mathematics. The Wiener–Hopf technique : Modern applications and developments 59 : 1–16
- Mark, Charles. 1947. “The neutron density near a plane surface”. Physical Review 72 : 558–564
- McCormick, Norman J., and Kuščer, Ivan. 1973. “Singular eigenfunction expansions in neutron transport theory.” in Advances in Nuclear Science and Technology 7 : 181–282, eds. E.J. Henley, and J. Lewins. New York : Academic Press
- McCormick, Norman J., and Siewert, Charles E.. 1970. “ Spectral Line Formation by noncoherent Scattering”. Astrophys. J. 162 : 633–647
- Milne, Edward A.. 1921. “Radiative Equilibrium in the Outer Layers of a Star: the temperature distribution and the Law of Darkening”. Monthly Notices of the Royal astronomical Society 81 : 361–375
- Noble, Benjamin. 1958. Methods based on the Wiener–Hopf Technique for the solution of partial differential equations London : Pergamon Press
- Paletou, Frederic and Auer, Laurence H. 1995. “A new approximate Operator Method for Partial Frequency Redistribution Problems”. Astronomy and Astrophysics 297 : 771–778
- Pandey, J. N. 1996. The Hilbert transform of Schwartz distributions and applications. New York : John Wiley and Sons
- Pincus, Joel. 1966. “The spectral Theory of self-adjoint Wiener–Hopf Operators.” Bulletin of the American Mathematical Society 72: 882–887
- Pincus, Joel. 1981. “Commentary on [31a]” in Norbert Wiener Collected Works with Commentaries, Volume III 44–53 Ed. P. MAsani. Cambdrige, Mass. : The MIT Press
- Placzek, George .1947. “The angular Distribution of Neutrons emerging from a plane Surface”. Physical Review 72 : 556–558
- Placzek, George and Seidel W. 1947. “Milne’s Problem in Transport Theory”. Physical Review 72 : 550–555
- Pogorzelski, Witold. 1966. Integral Equations and their Applications. New York : Pergamon Press
- Schwarzschild, Karl. 1906. “Über das Gleichgewicht der Sonnenatmosphäre.” Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische. Klasse 195 : 41–53
- Schwarzschild, Karl. 1914. “Über Diffusion und absorption in der Sonnenatmosphäre”. Sitzungberichte der Preussichen Akademie der Wissenschaften zu Berlin 47 : 1183–1200
- Siewert, Charles E. 1984. “On radiative-transfer problems with reflective boundary conditions and internal emission”. Zeitschrift für angewandte Mathematik und Physik 35 : 144–155
- Siewert, Charles E. and Benoist, Pierre. 1979. “The FNsubscript𝐹𝑁F_{N}italic_F start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT method in Neutron-Transport Theory. Part I: Theory and Applications”. Nuclear science and Engineering 69 : 156–160
- Siewert, Charles E. and Burniston, Ernest E. 1972. “On Existence and Uniqueness Theorems Concerning the H𝐻Hitalic_H-matrix of Radiative Transfer”. The Astrophysical Journal 174 : 629–641
- Siewert, Charles E. and Fraley, Stanley K. 1967. “Radiative transfer in a free-electron atmosphere”. Annals of Physics (New York) 43 : 338–359
- Wiener, Norbert, and Hopf, Eberhard. 1931. “Über eine Klasse singulärer Integralgleichungen.” Sitzungsberichte der Preussichen Akademie, Mathematisch-Physikalische Klasse 3. Dezember 1931 31 : 696–706. 1934. In Paley, Raymond C., and Wiener, Norbert. Fourier transforms in the Complex Domain. American Mathematical Society Colloquium Publications XIX : 49–58
- Yengibarian, Norair B., and Khachatrian, Agharvard Kh. 1991. “On a problem of multiple resonance scattering of gamma-ray quanta.” Journal of Quantitative Spectroscopy and Radiative Transfer 46 : 565–575
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.