Papers
Topics
Authors
Recent
Search
2000 character limit reached

Thin Gordian Unlinks

Published 23 Oct 2023 in math.GT | (2310.14846v3)

Abstract: A gordian unlink is a finite number of unknots that are not topologically linked, each with prescribed length and thickness, and that cannot be disentangled into the trivial link by an isotopy preserving length and thickness throughout. In this note, we provide the first examples of gordian unlinks. As a consequence, we identify the existence of isotopy classes of unknots that differ from those in classical knot theory. More generally, we present a one-parameter family of gordian unlinks with thickness ranging in $[1,2)$ and absolute curvature bounded by 1, concluding that thinner normal tubes lead to different rope geometries than those previously considered. Knots or links in the one-parameter model introduced here are called thin knots or links. When the thickness is equal to 2, we obtain the standard model for geometric knots, also called thick knots.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.