Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Soliton resolution and asymptotic stability of $N$-loop-soliton solutions for the Ostrovsky-Vakhnenko equation (2310.13657v2)

Published 19 Oct 2023 in math-ph and math.MP

Abstract: The Ostrovsky-Vakhnenko (OV) equation \begin{align*} &u_{txx}-3\kappa u_x+3u_xu_{xx}+uu_{xxx}=0 \end{align*} is a short wave model of the well-known Degasperis-Procesi equation and admits a $3\times 3$ matrix Lax pair. In this paper, we study the soliton resolution and asymptotic stability of $N$-loop soliton solutions for the OV equation with Schwartz initial data that supports soliton solutions. It is shown that the solution of the Cauchy problem can be characterized via a $3\times 3$ matrix Riemann-Hilbert (RH) problem in a new scale. Further by deforming the RH problem into solvable models with $\bar\partial$-steepest descent method, we obtain the soliton resolution to the OV equation in two space-time regions $x/t>0$ and $x/t<0$. This result also implies that $N$-loop soliton solutions of the OV equation are asymptotically stable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: