Exact Linearization of Minimally Underactuated Configuration Flat Lagrangian Control Systems by Quasi-Static Feedback of Classical States (2310.13371v2)
Abstract: We study the exact linearization of configuration flat Lagrangian control systems with p degrees of freedom and p-1 inputs by quasi-static feedback of classical states. First, we present a detailed analysis of the structure of the parameterization of the system variables by the flat output. Based on that, we systematically construct a linearizing quasi-static feedback law of the classical state such that the closed-loop system shows the behavior of decoupled integrator chains. Our approach shows that the construction of a generalized Brunovsky state can be completely circumvented. Furthermore, we present a method for determining the lengths of the integrator chains achieved by quasi-static feedback laws that allow for rest-to-rest transitions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.