Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Peeling fingers in an elastic Hele-Shaw channel (2310.12940v2)

Published 19 Oct 2023 in physics.flu-dyn and nlin.PS

Abstract: Using experiments and a depth-averaged numerical model, we study instabilities of two-phase flows in a Hele-Shaw channel with an elastic upper boundary and a non-uniform cross-section prescribed by initial collapse. Experimentally, we find increasingly complex and unsteady modes of air-finger propagation as the dimensionless bubble speed, Ca, and level of collapse are increased, including pointed fingers, indented fingers and the feathered modes first identified by Cuttle et al.(J. Fluid Mech., vol. 886, 2020, A20). By introducing a measure of the viscous contribution to finger propagation, we identify a Ca threshold beyond which viscous forces are superseded by elastic effects. Quantitative prediction of this transition between 'viscous' and 'elastic' reopening regimes across levels of collapse establishes the fidelity of the numerical model. In the viscous regime, we recover the non-monotonic dependence on Ca of the finger pressure, which is characteristic of benchtop models of airway reopening. To explore the elastic regime numerically, we extend the depth-averaged model introduced by Fontana et al. (J. Fluid Mech., vol. 916, 2021, A27) to include an artificial disjoining pressure which prevents the unphysical self-intersection of the interface. Using time simulations, we capture for the first time the majority of experimental finger dynamics, including feathered modes. We show that these disordered states continually evolve, with no evidence of convergence to steady or periodic states. We find that the steady bifurcation structure satisfactorily predicts the bubble pressure as a function of Ca, but that it does not provide sufficient information to predict the transition to unsteady dynamics which appears strongly nonlinear.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube