Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Periodic dynamics in viscous fingering (2402.19391v1)

Published 29 Feb 2024 in physics.flu-dyn

Abstract: The displacement of a viscous liquid by air in the narrow gap between two parallel plates - a Hele-Shaw channel - is an exemplar of complex pattern formation. Typically, bubbles or fingers of air propagate steadily at low values of the driving parameter. However, as the driving parameter increases, they can exhibit disordered pattern-forming dynamics. In this paper, we demonstrate experimentally that a remote perturbation of the bubble's tip can drive time-periodic bubble propagation: a fundamental building block of complex unsteady dynamics. We exploit the propensity of a group of bubbles to self-organise into a fixed spatial arrangement in a Hele-Shaw channel with a centralised depth-reduction in order to apply a sustained perturbation to a bubble's shape as it propagates. We find that the bubble with a perturbed shape begins to oscillate after the system undergoes a supercritical Hopf bifurcation upon variation of the tip perturbation and dimensionless flow rate. The oscillation cycle features the splitting of the bubble's tip and advection of the resulting finger-like protrusion along the bubble's length until it is absorbed by the bubble's advancing rear. The restoral of the bubble's tip follows naturally because the system is driven by a fixed flow rate and the perturbed bubble is attracted to the weakly unstable, steadily propagating state that is set by the ratio of imposed viscous and capillary forces. Our results suggest a generic mechanism for time-periodic dynamics of propagating curved fronts subject to a steady shape perturbation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. P. G. Saffman and G. I. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 245, 312–329 (1958).
  2. J. W. McLean and P. G. Saffman, The effect of surface tension on the shape of fingers in a Hele-Shaw cell, Journal of Fluid Mechanics 102, 455–469 (1981).
  3. D. A. Kessler and H. Levine, Theory of the Saffman-Taylor “finger” pattern. I, Phys. Rev. A 33, 2621 (1986).
  4. C. W. Park and G. M. Homsy, The instability of long fingers in Hele–Shaw flows, The Physics of Fluids 28, 1583 (1985).
  5. D. Bensimon, Stability of viscous fingering, Phys. Rev. A 33, 1302 (1986).
  6. P. Tabeling, G. Zocchi, and A. Libchaber, An experimental study of the Saffman-Taylor instability, Journal of Fluid Mechanics 177, 67–82 (1987).
  7. C. Chevalier and A. L. E. Clément, Destabilization of a Saffman-Taylor fingerlike pattern in a granular suspension, Phys. Rev. Lett. 99, 174501 (2007).
  8. M. Avila, D. Barkley, and B. Hof, Transition to turbulence in pipe flow, Annual Review of Fluid Mechanics 55, 10.1146/annurev-fluid-120720-025957 (2023).
  9. Y. Duguet, C. C. T. Pringle, and R. R. Kerswell, Relative periodic orbits in transitional pipe flow, Physics of Fluids 20, 114102 (2008).
  10. G. Kawahara, M. Uhlmann, and L. van Veen, The significance of simple invariant solutions in turbulent flows, Annual Review of Fluid Mechanics 44, 203 (2012).
  11. P. Cvitanović and J. F. Gibson, Geometry of the turbulence in wall-bounded shear flows: periodic orbits, Physica Scripta 2010, 014007 (2010).
  12. G. I. Taylor and P. Saffman, A note on the motion of bubbles in a Hele-Shaw cell and porous medium, Quarterly Journal of Mechanics and Applied Mathematics 12, 265 (1959).
  13. L. Romero, The fingering problem in a Hele-Shaw cell, Ph.D. thesis, California Institute of Technology (1982).
  14. J.-M. Vanden-Broeck, Fingers in a Hele-Shaw cell with surface tension, in Dynamics of Curved Fronts, edited by P. Pelcé (Academic Press, San Diego, 1988) pp. 191–192.
  15. C. Cuttle, D. Pihler-Puzović, and A. Juel, Dynamics of front propagation in a compliant channel, Journal of Fluid Mechanics 886, A20 (2020).
  16. A. Thompson, A. Hazel, and A. Juel, Multiple finger propagation modes in Hele-Shaw channels of variable depth, Journal of Fluid Mechanics 746, 123 (2014).
  17. P. Pelcé, Dynamics of curved fronts (1988).
  18. E. Lajeunesse and Y. Couder, On the tip-splitting instability of viscous fingers, Journal of Fluid Mechanics 419, 125–149 (2000).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube