Papers
Topics
Authors
Recent
Search
2000 character limit reached

Systems of Discrete Differential Equations, Constructive Algebraicity of the Solutions

Published 19 Oct 2023 in math.CO and cs.CC | (2310.12812v2)

Abstract: In this article, we study systems of $n \geq 1$, not necessarily linear, discrete differential equations (DDEs) of order $k \geq 1$ with one catalytic variable. We provide a constructive and elementary proof of algebraicity of the solutions of such equations. This part of the present article can be seen as a generalization of the pioneering work by Bousquet-M\'elou and Jehanne (2006) who settled down the case $n=1$. Moreover, we obtain effective bounds for the algebraicity degrees of the solutions and provide an algorithm for computing annihilating polynomials of the algebraic series. Finally, we carry out a first analysis in the direction of effectivity for solving systems of DDEs in view of practical applications.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.