Poincaré inequality and topological rigidity of translators and self-expanders for the mean curvature flow (2310.12722v2)
Abstract: We prove an abstract structure theorem for weighted manifolds supporting a weighted $f$-Poincar\'e inequality and whose ends satisfy a suitable non-integrability condition. We then study how our arguments can be used to obtain full topological control on two important classes of hypersurfaces of the Euclidean space, namely translators and self-expanders for the mean curvature flow, under either stability or curvature asumptions. As an important intermediate step in order to get our results we get the validity of a Poincar\'e inequality with respect to the natural weighted measure on any translator and we prove that any end of a translator must have infinite weighted volume. Similar tools can be obtained for properly immersed self-expanders permitting to get topological rigidity under curvature assumptions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.