Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Poincaré inequality and topological rigidity of translators and self-expanders for the mean curvature flow (2310.12722v2)

Published 19 Oct 2023 in math.DG

Abstract: We prove an abstract structure theorem for weighted manifolds supporting a weighted $f$-Poincar\'e inequality and whose ends satisfy a suitable non-integrability condition. We then study how our arguments can be used to obtain full topological control on two important classes of hypersurfaces of the Euclidean space, namely translators and self-expanders for the mean curvature flow, under either stability or curvature asumptions. As an important intermediate step in order to get our results we get the validity of a Poincar\'e inequality with respect to the natural weighted measure on any translator and we prove that any end of a translator must have infinite weighted volume. Similar tools can be obtained for properly immersed self-expanders permitting to get topological rigidity under curvature assumptions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.