Papers
Topics
Authors
Recent
2000 character limit reached

Watermarking LLMs with Weight Quantization (2310.11237v1)

Published 17 Oct 2023 in cs.CL

Abstract: Abuse of LLMs reveals high risks as LLMs are being deployed at an astonishing speed. It is important to protect the model weights to avoid malicious usage that violates licenses of open-source LLMs. This paper proposes a novel watermarking strategy that plants watermarks in the quantization process of LLMs without pre-defined triggers during inference. The watermark works when the model is used in the fp32 mode and remains hidden when the model is quantized to int8, in this way, the users can only inference the model without further supervised fine-tuning of the model. We successfully plant the watermark into open-source LLM weights including GPT-Neo and LLaMA. We hope our proposed method can provide a potential direction for protecting model weights in the era of LLM applications.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.