Papers
Topics
Authors
Recent
2000 character limit reached

Deep Policy Iteration for High-Dimensional Mean Field Games (2310.10827v4)

Published 16 Oct 2023 in math.OC

Abstract: This paper introduces Deep Policy Iteration (DPI), a novel approach that integrates the strengths of Neural Networks with the stability and convergence advantages of Policy Iteration (PI) to address high-dimensional stochastic Mean Field Games (MFG). DPI overcomes the limitations of PI, which is constrained by the curse of dimensionality to low-dimensional problems, by iteratively training three neural networks to solve PI equations and satisfy forward-backwards conditions. Our findings indicate that DPI achieves comparable convergence levels to the Mean Field Deep Galerkin Method (MFDGM), with additional advantages. Furthermore, deep learning techniques show promise in handling separable Hamiltonian cases where PI alone is less effective. DPI effectively manages high-dimensional problems, extending the applicability of PI to both separable and non-separable Hamiltonians.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.