Papers
Topics
Authors
Recent
2000 character limit reached

A spectrally accurate step-by-step method for the numerical solution of fractional differential equations (2310.10526v2)

Published 16 Oct 2023 in math.NA and cs.NA

Abstract: In this paper we consider the numerical solution of fractional differential equations. In particular, we study a step-by-step graded mesh procedure based on an expansion of the vector field using orthonormal Jacobi polynomials. Under mild hypotheses, the proposed procedure is capable of getting spectral accuracy. A few numerical examples are reported to confirm the theoretical findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. P. Amodio, L. Brugnano. Parallel implementation of block boundary value methods for ODEs. J. Comput. Appl. Math. 78 (1997) 197–211. https://doi.org/10.1016/S0377-0427(96)00112-4
  2. L. Brugnano, F. Iavernaro. Line Integral Solution of Differential Problems. Axioms 7(2) (2018) 36. https://doi.org/10.3390/axioms7020036
  3. L. Brugnano, F. Iavernaro. A general framework for solving differential equations. Ann. Univ. Ferrara Sez. VII Sci. Mat. 68 (2022) 243–258. https://doi.org/10.1007/s11565-022-00409-6
  4. A. Bueno-Orovio, K. Burrage. Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging. Commun. Nonlinear Sci. Numer. Simul. 52 (2017) 91–109.
  5. R. De Vore, L.R. Scott. Error bounds for Gaussian quadrature and weighted-L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT polynomial approximation. SIAM J. Numer. Anal. 21, No. 2 (1984) 400–412. https://doi.org/10.1137/0721030
  6. R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53, No. 3 (2015) 1350–1369. https://doi.org/10.1137/140971191
  7. R. Garrappa. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comp. Simul. 110 (2015) 96–112. http://doi.org/10.1016/j.matcom.2013.09.012.
  8. R. Garrappa. Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2) (2018) 16. http://doi.org/10.3390/math6020016
  9. W. Gautschi. Orthogonal Polynomials Computation and Approximation. Oxford University Press, 2004.
  10. B.I. Henry, T.A.M. Langlands. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Letts. 100(12) (2008) 128103.
  11. K. Lindenberg, S.B. Yuste. Properties of the reaction front in a reaction-subdiffusion process. Noise in Complex Systems and Stochastic Dynamics II 5471 (2004) 20–28.
  12. Ch. Lubich. Fractional Linear Multistep Methods for Abel-Volterra Integral Equations of the Second Kind. Math. Comp. 45, No. 172 (1985) 463–469. https://doi.org/10.1090/S0025-5718-1985-0804935-7
  13. Ch. Lubich. Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719.
  14. E. Orsingher, L. Beghin. Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1) (2009) 206–249.
  15. Z. Satmari. Iterative Bernstein splines technique applied to fractional order differential equations. Mathematical Foundations of Computing 6 (2023) 41–53. https://doi.org/10.3934/mfc.2021039
  16. W. Themistoclakis. Some error bounds for Gauss-Jacobi quadrature rules. Appl. Numer. Math. 116 (2017) 286–293. https://doi.org/10.1016/j.apnum.2017.02.009
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.