2000 character limit reached
A spectrally accurate step-by-step method for the numerical solution of fractional differential equations (2310.10526v2)
Published 16 Oct 2023 in math.NA and cs.NA
Abstract: In this paper we consider the numerical solution of fractional differential equations. In particular, we study a step-by-step graded mesh procedure based on an expansion of the vector field using orthonormal Jacobi polynomials. Under mild hypotheses, the proposed procedure is capable of getting spectral accuracy. A few numerical examples are reported to confirm the theoretical findings.
- P. Amodio, L. Brugnano. Parallel implementation of block boundary value methods for ODEs. J. Comput. Appl. Math. 78 (1997) 197–211. https://doi.org/10.1016/S0377-0427(96)00112-4
- L. Brugnano, F. Iavernaro. Line Integral Solution of Differential Problems. Axioms 7(2) (2018) 36. https://doi.org/10.3390/axioms7020036
- L. Brugnano, F. Iavernaro. A general framework for solving differential equations. Ann. Univ. Ferrara Sez. VII Sci. Mat. 68 (2022) 243–258. https://doi.org/10.1007/s11565-022-00409-6
- A. Bueno-Orovio, K. Burrage. Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging. Commun. Nonlinear Sci. Numer. Simul. 52 (2017) 91–109.
- R. De Vore, L.R. Scott. Error bounds for Gaussian quadrature and weighted-L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT polynomial approximation. SIAM J. Numer. Anal. 21, No. 2 (1984) 400–412. https://doi.org/10.1137/0721030
- R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53, No. 3 (2015) 1350–1369. https://doi.org/10.1137/140971191
- R. Garrappa. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comp. Simul. 110 (2015) 96–112. http://doi.org/10.1016/j.matcom.2013.09.012.
- R. Garrappa. Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2) (2018) 16. http://doi.org/10.3390/math6020016
- W. Gautschi. Orthogonal Polynomials Computation and Approximation. Oxford University Press, 2004.
- B.I. Henry, T.A.M. Langlands. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Letts. 100(12) (2008) 128103.
- K. Lindenberg, S.B. Yuste. Properties of the reaction front in a reaction-subdiffusion process. Noise in Complex Systems and Stochastic Dynamics II 5471 (2004) 20–28.
- Ch. Lubich. Fractional Linear Multistep Methods for Abel-Volterra Integral Equations of the Second Kind. Math. Comp. 45, No. 172 (1985) 463–469. https://doi.org/10.1090/S0025-5718-1985-0804935-7
- Ch. Lubich. Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719.
- E. Orsingher, L. Beghin. Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1) (2009) 206–249.
- Z. Satmari. Iterative Bernstein splines technique applied to fractional order differential equations. Mathematical Foundations of Computing 6 (2023) 41–53. https://doi.org/10.3934/mfc.2021039
- W. Themistoclakis. Some error bounds for Gauss-Jacobi quadrature rules. Appl. Numer. Math. 116 (2017) 286–293. https://doi.org/10.1016/j.apnum.2017.02.009
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.