Papers
Topics
Authors
Recent
2000 character limit reached

Quantum random access memory architectures using superconducting cavities (2310.08288v3)

Published 12 Oct 2023 in quant-ph

Abstract: Quantum random access memory (QRAM) is a common architecture resource for algorithms with many proposed applications, including quantum chemistry, windowed quantum arithmetic, unstructured search, machine learning, and quantum cryptography. Here we propose two bucket-brigade QRAM architectures based on high-coherence superconducting resonators, which differ in their realizations of the conditional-routing operations. In the first, we directly construct controlled-$\mathsf{SWAP}$ ($\textsf{CSWAP}$) operations, while in the second we utilize the properties of giant-unidirectional emitters (GUEs). For both architectures we analyze single-rail and dual-rail implementations of a bosonic qubit. In the single-rail encoding we can detect first-order ancilla errors, while the dual-rail encoding additionally allows for the detection of photon losses. For parameter regimes of interest the post-selected infidelity of a QRAM query in a dual-rail architecture is nearly an order of magnitude below that of a corresponding query in a single-rail architecture. These findings suggest that dual-rail encodings are particularly attractive as architectures for QRAM devices in the era before fault tolerance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010) Chap. 8.
  2. S. Jaques and A. G. Rattew, QRAM: A Survey and Critique (2023), arXiv:2305.10310 [quant-ph].
  3. C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).
  4. C. Gidney, Windowed quantum arithmetic (2019), arXiv:1905.07682 [quant-ph].
  5. G. Kuperberg, Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem (2011), arXiv:1112.3333 [quant-ph].
  6. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009).
  7. V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for a quantum random access memory, Phys. Rev. A 78, 052310 (2008a).
  8. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum random access memory, Phys. Rev. Lett. 100, 160501 (2008b).
  9. N. Gheeraert, S. Kono, and Y. Nakamura, Programmable directional emitter and receiver of itinerant microwave photons in a waveguide, Phys. Rev. A 102, 053720 (2020).
  10. A. Ambainis, Quantum walk algorithm for element distinctness (2014), arXiv:quant-ph/0311001 [quant-ph] .
  11. N. Schuch and J. Siewert, Natural two-qubit gate for quantum computation using the XYXY\mathrm{XY}roman_XY interaction, Phys. Rev. A 67, 032301 (2003).
  12. I. L. Chuang and Y. Yamamoto, Simple quantum computer, Phys. Rev. A 52, 3489 (1995).
  13. C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).
  14. We are assuming that the QRAM device is initialized in the vacuum state, as opposed to some proposed QRAM architectures that can be initialized in an arbitrary state [18].
  15. A. N. Korotkov, Flying microwave qubits with nearly perfect transfer efficiency, Phys. Rev. B 84, 014510 (2011).
  16. The router thus serves as a “switch”  that communicates to incoming data either “keep going”  or “change direction.”  Compiling that information into the actual location encoded by the address qubits can be done easily by tracking phases in software.
  17. B. Eastin and S. T. Flammia, Q-circuit tutorial (2004), arXiv:quant-ph/0406003 [quant-ph] .
  18. Note that the QRAM query times tn=t𝖢𝖹⁢Ntssubscript𝑡𝑛subscript𝑡𝖢𝖹subscript𝑁tst_{n}=t_{\mathsf{CZ}}N_{\rm ts}italic_t start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT sansserif_CZ end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT roman_ts end_POSTSUBSCRIPT are shorter than T1csuperscriptsubscript𝑇1𝑐T_{1}^{c}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT for the parameters considered in this paper. Thus a parity check performed only at the end of the circuit is sufficient, and we do not expect to be limited by uncaught cavity decay/heating events [71].
  19. M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Phys. Lett. A 303, 249 (2002).
  20. C. Dankert, Efficient simulation of random quantum states and operators (2005), arXiv:quant-ph/0512217 .
  21. L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367, 47 (2007).
  22. M. Mohseni, A. T. Rezakhani, and D. A. Lidar, Quantum-process tomography: Resource analysis of different strategies, Phys. Rev. A 77, 032322 (2008).
  23. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
  24. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
  25. From the perspective of a dark state, this Hamiltonian actually is Hermitian.
  26. J. M. Zhang and R. X. Dong, Exact diagonalization: the bose–hubbard model as an example, Eur. J. Phys. 31, 591 (2010).
  27. E. P. Wigner, Lower limit for the energy derivative of the scattering phase shift, Phys. Rev. 98, 145 (1955).
  28. E. H. Hauge and J. A. Støvneng, Tunneling times: a critical review, Rev. Mod. Phys. 61, 917 (1989).
  29. C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.