Papers
Topics
Authors
Recent
2000 character limit reached

Age Estimation Based on Graph Convolutional Networks and Multi-head Attention Mechanisms

Published 12 Oct 2023 in cs.CV | (2310.08064v1)

Abstract: Age estimation technology is a part of facial recognition and has been applied to identity authentication. This technology achieves the development and application of a juvenile anti-addiction system by authenticating users in the game. Convolutional Neural Network (CNN) and Transformer algorithms are widely used in this application scenario. However, these two models cannot flexibly extract and model features of faces with irregular shapes, and they are ineffective in capturing key information. Furthermore, the above methods will contain a lot of background information while extracting features, which will interfere with the model. In consequence, it is easy to extract redundant information from images. In this paper, a new modeling idea is proposed to solve this problem, which can flexibly model irregular objects. The Graph Convolutional Network (GCN) is used to extract features from irregular face images effectively, and multi-head attention mechanisms are added to avoid redundant features and capture key region information in the image. This model can effectively improve the accuracy of age estimation and reduce the MAE error value to about 3.64, which is better than the effect of today's age estimation model, to improve the accuracy of face recognition and identity authentication.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.