Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Calibrating approximate Bayesian credible intervals of gravitational-wave parameters (2310.06321v2)

Published 10 Oct 2023 in gr-qc and astro-ph.IM

Abstract: Approximations are commonly employed in realistic applications of scientific Bayesian inference, often due to convenience if not necessity. In the field of gravitational-wave (GW) data analysis, fast-to-evaluate but approximate waveform models of astrophysical GW signals are sometimes used in lieu of more accurate models to infer properties of a true GW signal buried within detector noise. In addition, a Fisher-information-based normal approximation to the posterior distribution can also be used to conduct inference in bulk, without the need for extensive numerical calculations such as Markov chain Monte Carlo (MCMC) simulations. Such approximations can generally lead to an inaccurate posterior distribution with poor statistical coverage of the true posterior. In this article, we present a novel calibration procedure that calibrates the credible sets for a family of approximate posterior distributions, to ensure coverage of the true posterior at a level specified by the analyst. Tools such as autoencoders and artificial neural networks are used within our calibration model to compress the data (for efficiency) and to perform tasks such as logistic regression. As a proof of principle, we demonstrate our formalism on the GW signal from a high-mass binary black hole merger, a promising source for the near-future space-based GW observatory LISA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.