Magnetic Effect on Potential Barrier for Nucleosynthesis II (2310.06292v2)
Abstract: We investigate the impact of magnetic fields on the potential barrier between two interacting nuclei. We addressed this by solving the Boltzmann equation and Maxwell's theory in the presence of a magnetic field, resulting in the determination of magnetized permittivity. Additionally, we derived the magnetized Debye potential, which combines the conventional Debye potential with an additional magnetic component. We then compared the Boltzmann approach with the Debye method. Both methods consistently demonstrate that magnetic fields increase permittivity. This enhanced permittivity leads to a reduction in the potential barrier, consequently increasing the reaction rate for nucleosynthesis. Furthermore, the dependence on temperature and electron density in each approach is consistent. Our findings suggest that magnetized plasmas, which have existed since the Big Bang, have played a crucial role in nucleosynthesis.
- T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (2003).
- E. E. Salpeter, Electrons Screening and Thermonuclear Reactions, Australian Journal of Physics 7, 373 (1954).
- J. N. Bahcall, X. Chen, and M. Kamionkowski, Electron-screening correction for the proton-proton reaction, Phys. Rev. C 57, 2756 (1998), arXiv:astro-ph/9612209 [astro-ph] .
- E. E. Salpeter and H. M. van Horn, Nuclear Reaction Rates at High Densities, Astrophys. J. 155, 183 (1969).
- A. V. Gruzinov and J. N. Bahcall, Screening in Thermonuclear Reaction Rates in the Sun, Astrophys. J. 504, 996 (1998), arXiv:astro-ph/9801028 [astro-ph] .
- H. E. Dewitt, H. C. Graboske, and M. S. Cooper, Screening Factors for Nuclear Reactions. I. General Theory, Astrophys. J. 181, 439 (1973).
- M. Brüggen and D. O. Gough, On Electrostatic Screening of Ions in Astrophysical Plasmas, Astrophys. J. 488, 867 (1997), arXiv:astro-ph/9702102 [astro-ph] .
- L. S. Brown and R. F. Sawyer, Nuclear reaction rates in a plasma, Reviews of Modern Physics 69, 411 (1997), arXiv:astro-ph/9610256 [astro-ph] .
- C. Carraro, A. Schafer, and S. E. Koonin, Dynamic Screening of Thermonuclear Reactions, Astrophys. J. 331, 565 (1988).
- M. Opher and R. Opher, Dynamic Screening in Thermonuclear Reactions, Astrophys. J. 535, 473 (2000), arXiv:astro-ph/9908218 [astro-ph] .
- N. J. Shaviv and G. Shaviv, The Electrostatic Screening of Thermonuclear Reactions in Astrophysical Plasmas. I., Astrophys. J. 468, 433 (1996).
- J. Linhard, On the properties of a gas of charged particles, Dan. Vid. Selsk Mat.-Fys. Medd. 28, 8 (1954).
- B. Jancovici, On the relativistic degenerate electron gas, Il Nuovo Cimento 25, 428 (1962).
- M. Morita, Beta Decay and Muon Capture (W. A. Benjamin, Advanced Book Program, 1973).
- J. J. Matese and W. R. Johnson, Influence of Screening on the Atomic Photoeffect, Phys. Rev. 140, A1 (1965).
- K. Takahashi, M. F. El Eid, and W. Hillebrandt, Beta transition rates in hot and dense matter., Astron. Astrophys. 67, 185 (1978).
- L. Biermann, Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter), Zeitschrift Naturforschung Teil A 5, 65 (1950).
- B. Cheng and A. V. Olinto, Primordial magnetic fields generated in the quark-hadron transition, prd 50, 2421 (1994).
- A. Brandenburg and K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory, physrep 417, 1 (2005), arXiv:astro-ph/0405052 [astro-ph] .
- K. Park and E. G. Blackman, Comparison between turbulent helical dynamo simulations and a non-linear three-scale theory, MNRAS 419, 913 (2012a), arXiv:1108.6079 [astro-ph.IM] .
- K. Park and E. G. Blackman, Simulations of a magnetic fluctuation driven large-scale dynamo and comparison with a two-scale model, mnras 423, 2120 (2012b), arXiv:1201.0800 [physics.plasm-ph] .
- E. M. Lifshitz and L. P. Pitaevskii, Physical kinetics (1981).
- D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications (2017).
- D. J. Griffiths, Introduction to Electrodynamics (2017).
- M. M. Hatami, Sheath properties in active magnetized multi-component plasmas, Scientific Reports 11, 9531 (2021).
- D. C. Leslie and C. E. Leith, Developments in the Theory of Turbulence, Physics Today 28, 59 (1975).
- W. D. McComb, Chemical Physics (1990).
- K. Park and M.-K. Cheoun, Evolution of Kinetic and Magnetic Energy in a large magnetic Prandtl number System, Astrophysical Journal, accepted (2022).
- Exceptionally, ϵ<0italic-ϵ0\epsilon<0italic_ϵ < 0 and μ>0𝜇0\mu>0italic_μ > 0 is known to propagate in the interface of plasma-vacuum or plasma-dielectric material.
- V. G. Veselago, The Electrodynamics of Substances with Simultaneously Negative Values of ϵitalic-ϵ\epsilonitalic_ϵ and μ𝜇\muitalic_μ, Soviet Physics Uspekhi 10, 509 (1968).
- J. Bergman, The magnetized plasma permittivity tensor, Physics of Plasmas 7, 3476 (2000).
- M. Newman, Computational physics (2012).
- L. Landau, ON THE VIBRATIONS OF THE ELECTRONIC PLASMA, Journal of Physics (USSR) 10, 85 (1946).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.