Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Magnetic Effect on Potential Barrier for Nucleosynthesis II (2310.06292v2)

Published 10 Oct 2023 in astro-ph.CO, astro-ph.SR, nucl-th, physics.app-ph, and physics.plasm-ph

Abstract: We investigate the impact of magnetic fields on the potential barrier between two interacting nuclei. We addressed this by solving the Boltzmann equation and Maxwell's theory in the presence of a magnetic field, resulting in the determination of magnetized permittivity. Additionally, we derived the magnetized Debye potential, which combines the conventional Debye potential with an additional magnetic component. We then compared the Boltzmann approach with the Debye method. Both methods consistently demonstrate that magnetic fields increase permittivity. This enhanced permittivity leads to a reduction in the potential barrier, consequently increasing the reaction rate for nucleosynthesis. Furthermore, the dependence on temperature and electron density in each approach is consistent. Our findings suggest that magnetized plasmas, which have existed since the Big Bang, have played a crucial role in nucleosynthesis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (2003).
  2. E. E. Salpeter, Electrons Screening and Thermonuclear Reactions, Australian Journal of Physics 7, 373 (1954).
  3. J. N. Bahcall, X. Chen, and M. Kamionkowski, Electron-screening correction for the proton-proton reaction, Phys. Rev. C 57, 2756 (1998), arXiv:astro-ph/9612209 [astro-ph] .
  4. E. E. Salpeter and H. M. van Horn, Nuclear Reaction Rates at High Densities, Astrophys. J. 155, 183 (1969).
  5. A. V. Gruzinov and J. N. Bahcall, Screening in Thermonuclear Reaction Rates in the Sun, Astrophys. J.  504, 996 (1998), arXiv:astro-ph/9801028 [astro-ph] .
  6. H. E. Dewitt, H. C. Graboske, and M. S. Cooper, Screening Factors for Nuclear Reactions. I. General Theory, Astrophys. J.  181, 439 (1973).
  7. M. Brüggen and D. O. Gough, On Electrostatic Screening of Ions in Astrophysical Plasmas, Astrophys. J.  488, 867 (1997), arXiv:astro-ph/9702102 [astro-ph] .
  8. L. S. Brown and R. F. Sawyer, Nuclear reaction rates in a plasma, Reviews of Modern Physics 69, 411 (1997), arXiv:astro-ph/9610256 [astro-ph] .
  9. C. Carraro, A. Schafer, and S. E. Koonin, Dynamic Screening of Thermonuclear Reactions, Astrophys. J.  331, 565 (1988).
  10. M. Opher and R. Opher, Dynamic Screening in Thermonuclear Reactions, Astrophys. J.  535, 473 (2000), arXiv:astro-ph/9908218 [astro-ph] .
  11. N. J. Shaviv and G. Shaviv, The Electrostatic Screening of Thermonuclear Reactions in Astrophysical Plasmas. I., Astrophys. J.  468, 433 (1996).
  12. J. Linhard, On the properties of a gas of charged particles, Dan. Vid. Selsk Mat.-Fys. Medd. 28, 8 (1954).
  13. B. Jancovici, On the relativistic degenerate electron gas, Il Nuovo Cimento 25, 428 (1962).
  14. M. Morita, Beta Decay and Muon Capture (W. A. Benjamin, Advanced Book Program, 1973).
  15. J. J. Matese and W. R. Johnson, Influence of Screening on the Atomic Photoeffect, Phys. Rev. 140, A1 (1965).
  16. K. Takahashi, M. F. El Eid, and W. Hillebrandt, Beta transition rates in hot and dense matter., Astron. Astrophys. 67, 185 (1978).
  17. L. Biermann, Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter), Zeitschrift Naturforschung Teil A 5, 65 (1950).
  18. B. Cheng and A. V. Olinto, Primordial magnetic fields generated in the quark-hadron transition, prd 50, 2421 (1994).
  19. A. Brandenburg and K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory, physrep 417, 1 (2005), arXiv:astro-ph/0405052 [astro-ph] .
  20. K. Park and E. G. Blackman, Comparison between turbulent helical dynamo simulations and a non-linear three-scale theory, MNRAS 419, 913 (2012a), arXiv:1108.6079 [astro-ph.IM] .
  21. K. Park and E. G. Blackman, Simulations of a magnetic fluctuation driven large-scale dynamo and comparison with a two-scale model, mnras 423, 2120 (2012b), arXiv:1201.0800 [physics.plasm-ph] .
  22. E. M. Lifshitz and L. P. Pitaevskii, Physical kinetics (1981).
  23. D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications (2017).
  24. D. J. Griffiths, Introduction to Electrodynamics (2017).
  25. M. M. Hatami, Sheath properties in active magnetized multi-component plasmas, Scientific Reports 11, 9531 (2021).
  26. D. C. Leslie and C. E. Leith, Developments in the Theory of Turbulence, Physics Today 28, 59 (1975).
  27. W. D. McComb, Chemical Physics (1990).
  28. K. Park and M.-K. Cheoun, Evolution of Kinetic and Magnetic Energy in a large magnetic Prandtl number System, Astrophysical Journal, accepted  (2022).
  29. Exceptionally, ϵ<0italic-ϵ0\epsilon<0italic_ϵ < 0 and μ>0𝜇0\mu>0italic_μ > 0 is known to propagate in the interface of plasma-vacuum or plasma-dielectric material.
  30. V. G. Veselago, The Electrodynamics of Substances with Simultaneously Negative Values of ϵitalic-ϵ\epsilonitalic_ϵ and μ𝜇\muitalic_μ, Soviet Physics Uspekhi 10, 509 (1968).
  31. J. Bergman, The magnetized plasma permittivity tensor, Physics of Plasmas 7, 3476 (2000).
  32. M. Newman, Computational physics (2012).
  33. L. Landau, ON THE VIBRATIONS OF THE ELECTRONIC PLASMA, Journal of Physics (USSR) 10, 85 (1946).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: