Approximations of the Green's Function in Multiple Scattering Theory for Crystalline Systems (2310.05713v2)
Abstract: The multiple scattering theory (MST) is a Green's function method that has been widely used in electronic structure calculations for crystalline disordered systems. The key property of the MST method is the scattering path matrix (SPM) that characterizes the Green's function within a local solution representation. This paper studies various approximations of the SPM, under the condition that an appropriate reference is used for perturbation. In particular, we justify the convergence of the SPM approximations with respect to the size of scattering region and the length of scattering path, which are the central numerical parameters to achieve a linear-scaling MST method. We present numerical experiments on several typical systems to support the theory.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.