Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space (2310.04915v2)

Published 7 Oct 2023 in physics.comp-ph, cs.AI, and cs.LG

Abstract: Diffusion-based generative models in SE(3)-invariant space have demonstrated promising performance in molecular conformation generation, but typically require solving stochastic differential equations (SDEs) with thousands of update steps. Till now, it remains unclear how to effectively accelerate this procedure explicitly in SE(3)-invariant space, which greatly hinders its wide application in the real world. In this paper, we systematically study the diffusion mechanism in SE(3)-invariant space via the lens of approximate errors induced by existing methods. Thereby, we develop more precise approximate in SE(3) in the context of projected differential equations. Theoretical analysis is further provided as well as empirical proof relating hyper-parameters with such errors. Altogether, we propose a novel acceleration scheme for generating molecular conformations in SE(3)-invariant space. Experimentally, our scheme can generate high-quality conformations with 50x--100x speedup compared to existing methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.