2000 character limit reached
Applications of Littlestone dimension to query learning and to compression (2310.04812v1)
Published 7 Oct 2023 in cs.LG and math.LO
Abstract: In this paper we give several applications of Littlestone dimension. The first is to the model of \cite{angluin2017power}, where we extend their results for learning by equivalence queries with random counterexamples. Second, we extend that model to infinite concept classes with an additional source of randomness. Third, we give improved results on the relationship of Littlestone dimension to classes with extended $d$-compression schemes, proving a strong version of a conjecture of \cite{floyd1995sample} for Littlestone dimension.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.