Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Rank Onset-Occurring-Offset Representations for Micro-Expression Recognition (2310.04664v1)

Published 7 Oct 2023 in cs.CV

Abstract: This paper focuses on the research of micro-expression recognition (MER) and proposes a flexible and reliable deep learning method called learning to rank onset-occurring-offset representations (LTR3O). The LTR3O method introduces a dynamic and reduced-size sequence structure known as 3O, which consists of onset, occurring, and offset frames, for representing micro-expressions (MEs). This structure facilitates the subsequent learning of ME-discriminative features. A noteworthy advantage of the 3O structure is its flexibility, as the occurring frame is randomly extracted from the original ME sequence without the need for accurate frame spotting methods. Based on the 3O structures, LTR3O generates multiple 3O representation candidates for each ME sample and incorporates well-designed modules to measure and calibrate their emotional expressiveness. This calibration process ensures that the distribution of these candidates aligns with that of macro-expressions (MaMs) over time. Consequently, the visibility of MEs can be implicitly enhanced, facilitating the reliable learning of more discriminative features for MER. Extensive experiments were conducted to evaluate the performance of LTR3O using three widely-used ME databases: CASME II, SMIC, and SAMM. The experimental results demonstrate the effectiveness and superior performance of LTR3O, particularly in terms of its flexibility and reliability, when compared to recent state-of-the-art MER methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.