Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Real-time dynamics of false vacuum decay (2310.04206v2)

Published 6 Oct 2023 in hep-th, astro-ph.CO, gr-qc, hep-ph, and quant-ph

Abstract: We investigate false vacuum decay of a relativistic scalar field initialized in the metastable minimum of an asymmetric double-well potential. The transition to the true ground state is a well-defined initial-value problem in real time, which can be formulated in nonequilibrium quantum field theory on a closed time path. We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion. We also compare to classical-statistical field theory simulations on a lattice in the high-temperature regime. By this, we demonstrate that the real-time decay rates are comparable to those obtained from the conventional Euclidean (bounce) approach. In general, we find that the decay rates are time dependent. For a more comprehensive description of the dynamics, we extract a time-dependent effective potential, which becomes convex during the nonequilibrium transition process. By solving the quantum evolution equations for the one- and two-point correlation functions for vacuum initial conditions, we demonstrate that quantum corrections can lead to transitions that are not captured by classical-statistical approximations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179, 273 (1989).
  2. P. B. Arnold, Can the Electroweak Vacuum Be Unstable?, Phys. Rev. D 40, 613 (1989).
  3. T. Markkanen, A. Rajantie, and S. Stopyra, Cosmological Aspects of Higgs Vacuum Metastability, Front. Astron. Space Sci. 5, 40 (2018), arXiv:1809.06923 [astro-ph.CO] .
  4. G. W. Anderson and L. J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45, 2685 (1992).
  5. J. R. Espinosa and M. Quiros, The Electroweak phase transition with a singlet, Phys. Lett. B 305, 98 (1993), arXiv:hep-ph/9301285 .
  6. G. R. Farrar and M. E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory, Phys. Rev. D 50, 774 (1994), arXiv:hep-ph/9305275 .
  7. D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv:1206.2942 [hep-ph] .
  8. A. D. Linde, Particle physics and inflationary cosmology, Vol. 5 (1990) arXiv:hep-th/0503203 .
  9. E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990).
  10. J. S. Langer, Theory of nucleation rates, Phys. Rev. Lett. 21, 973 (1968).
  11. S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15, 2929 (1977), [Erratum: Phys.Rev.D 16, 1248 (1977)].
  12. J. Callan, Curtis G. and S. R. Coleman, The Borsanyi:2005the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16, 1762 (1977).
  13. S. Coleman, Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, Cambridge, U.K., 1985).
  14. A. D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications, Phys. Lett. B 100, 37 (1981).
  15. A. D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216, 421 (1983), erratum: Nucl.Phys.B 223, 544 (1983).
  16. M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Vol. 925 (Springer, 2016) arXiv:1701.01554 [hep-ph] .
  17. G. V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72, 125004 (2005), arXiv:hep-th/0511156 .
  18. Y. Bergner and L. M. A. Bettencourt, The self-consistent bounce: an improved nucleation rate, Phys. Rev. D 69, 045012 (2004), arXiv:hep-ph/0308107 .
  19. Y. Bergner and L. M. A. Bettencourt, A Step beyond the bounce: Bubble dynamics in quantum phase transitions, Phys. Rev. D 68, 025014 (2003), arXiv:hep-ph/0206053 .
  20. M. Gleiser and R. C. Howell, Resonant nucleation, Phys. Rev. Lett. 94, 151601 (2005), arXiv:hep-ph/0409179 .
  21. N. Goldenfeld, Lectures on phase transitions and the renormalization group (CRC Press, 2018).
  22. L. V. Keldysh, Diagram technique for nonequilibrium processes (1964).
  23. J. Berges, Controlled nonperturbative dynamics of quantum fields out-of-equilibrium, Nucl. Phys. A 699, 847 (2002a), arXiv:hep-ph/0105311 .
  24. A. Arrizabalaga, J. Smit, and A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation, JHEP 10, 017, arXiv:hep-ph/0409177 .
  25. A. Tranberg and G. Ungersbäck, Bubble nucleation and quantum initial conditions in classical statistical simulations, JHEP 09, 206, arXiv:2206.08691 [hep-lat] .
  26. M. G. Alford and M. Gleiser, Metastability in two-dimensions and the effective potential, Phys. Rev. D 48, 2838 (1993), arXiv:hep-ph/9304245 .
  27. O. Gould and J. Hirvonen, Effective field theory approach to thermal bubble nucleation, Phys. Rev. D 104, 096015 (2021), arXiv:2108.04377 [hep-ph] .
  28. T. P. Billam, K. Brown, and I. G. Moss, False-vacuum decay in an ultracold spin-1 Bose gas, Phys. Rev. A 105, L041301 (2022), arXiv:2108.05740 [cond-mat.quant-gas] .
  29. T. P. Billam, K. Brown, and I. G. Moss, Bubble nucleation in a cold spin 1 gas, New J. Phys. 25, 043028 (2023), arXiv:2212.03621 [cond-mat.quant-gas] .
  30. E. A. Calzetta and B.-L. B. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2008).
  31. A. Strumia and N. Tetradis, Bubble nucleation rates for radiatively induced first order phase transitions, Nucl. Phys. B 554, 697 (1999), arXiv:hep-ph/9811438 .
  32. G. D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63, 045002 (2001), arXiv:hep-ph/0009132 .
  33. M. Gleiser and R. O. Ramos, Thermal fluctuations and validity of the 1-loop effective potential, Physics Letters B 300, 271 (1993).
  34. J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363, 223 (2002), arXiv:hep-ph/0005122 .
  35. J. Berges, Nonequilibrium quantum fields: From cold atoms to cosmology (2015), arXiv:1503.02907 [hep-ph] .
  36. J. Berges, S. Borsanyi, and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002 (2004), arXiv:hep-ph/0403234 .
  37. S. Borsanyi, Nonequilibrium field theory from the 2PI effective action, PoS JHW2005, 004 (2006), arXiv:hep-ph/0512308 .
  38. A. H. Guth and E. J. Weinberg, Cosmological consequences of a first-order phase transition in the su5subscriptu5{\mathrm{u}}_{5}roman_u start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT grand unified model, Phys. Rev. D 23, 876 (1981).
  39. G. Aarts and J. Berges, Nonequilibrium time evolution of the spectral function in quantum field theory, Phys. Rev. D 64, 105010 (2001), arXiv:hep-ph/0103049 .
  40. J. Berges and J. Serreau, Parametric resonance in quantum field theory, Phys. Rev. Lett. 91, 111601 (2003), arXiv:hep-ph/0208070 .
  41. J. Berges, Controlled nonperturbative dynamics of quantum fields out-of-equilibrium, Nucl. Phys. A 699, 847 (2002b), arXiv:hep-ph/0105311 .
  42. S. Juchem, W. Cassing, and C. Greiner, Quantum dynamics and thermalization for out-of-equilibrium phi**4 theory, Phys. Rev. D 69, 025006 (2004), arXiv:hep-ph/0307353 .
  43. J. Berges and S. Borsanyi, Nonequilibrium quantum fields from first principles, Eur. Phys. J. A 29, 95 (2006), arXiv:hep-th/0512010 .
  44. L. Shen and A. Rothkopf, Solver for 2PI evolution equations at NLO in large N (2020).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.