Real-time dynamics of false vacuum decay (2310.04206v2)
Abstract: We investigate false vacuum decay of a relativistic scalar field initialized in the metastable minimum of an asymmetric double-well potential. The transition to the true ground state is a well-defined initial-value problem in real time, which can be formulated in nonequilibrium quantum field theory on a closed time path. We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion. We also compare to classical-statistical field theory simulations on a lattice in the high-temperature regime. By this, we demonstrate that the real-time decay rates are comparable to those obtained from the conventional Euclidean (bounce) approach. In general, we find that the decay rates are time dependent. For a more comprehensive description of the dynamics, we extract a time-dependent effective potential, which becomes convex during the nonequilibrium transition process. By solving the quantum evolution equations for the one- and two-point correlation functions for vacuum initial conditions, we demonstrate that quantum corrections can lead to transitions that are not captured by classical-statistical approximations.
- M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179, 273 (1989).
- P. B. Arnold, Can the Electroweak Vacuum Be Unstable?, Phys. Rev. D 40, 613 (1989).
- T. Markkanen, A. Rajantie, and S. Stopyra, Cosmological Aspects of Higgs Vacuum Metastability, Front. Astron. Space Sci. 5, 40 (2018), arXiv:1809.06923 [astro-ph.CO] .
- G. W. Anderson and L. J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45, 2685 (1992).
- J. R. Espinosa and M. Quiros, The Electroweak phase transition with a singlet, Phys. Lett. B 305, 98 (1993), arXiv:hep-ph/9301285 .
- G. R. Farrar and M. E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory, Phys. Rev. D 50, 774 (1994), arXiv:hep-ph/9305275 .
- D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv:1206.2942 [hep-ph] .
- A. D. Linde, Particle physics and inflationary cosmology, Vol. 5 (1990) arXiv:hep-th/0503203 .
- E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990).
- J. S. Langer, Theory of nucleation rates, Phys. Rev. Lett. 21, 973 (1968).
- S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15, 2929 (1977), [Erratum: Phys.Rev.D 16, 1248 (1977)].
- J. Callan, Curtis G. and S. R. Coleman, The Borsanyi:2005the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16, 1762 (1977).
- S. Coleman, Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, Cambridge, U.K., 1985).
- A. D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications, Phys. Lett. B 100, 37 (1981).
- A. D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216, 421 (1983), erratum: Nucl.Phys.B 223, 544 (1983).
- M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Vol. 925 (Springer, 2016) arXiv:1701.01554 [hep-ph] .
- G. V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72, 125004 (2005), arXiv:hep-th/0511156 .
- Y. Bergner and L. M. A. Bettencourt, The self-consistent bounce: an improved nucleation rate, Phys. Rev. D 69, 045012 (2004), arXiv:hep-ph/0308107 .
- Y. Bergner and L. M. A. Bettencourt, A Step beyond the bounce: Bubble dynamics in quantum phase transitions, Phys. Rev. D 68, 025014 (2003), arXiv:hep-ph/0206053 .
- M. Gleiser and R. C. Howell, Resonant nucleation, Phys. Rev. Lett. 94, 151601 (2005), arXiv:hep-ph/0409179 .
- N. Goldenfeld, Lectures on phase transitions and the renormalization group (CRC Press, 2018).
- L. V. Keldysh, Diagram technique for nonequilibrium processes (1964).
- J. Berges, Controlled nonperturbative dynamics of quantum fields out-of-equilibrium, Nucl. Phys. A 699, 847 (2002a), arXiv:hep-ph/0105311 .
- A. Arrizabalaga, J. Smit, and A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation, JHEP 10, 017, arXiv:hep-ph/0409177 .
- A. Tranberg and G. Ungersbäck, Bubble nucleation and quantum initial conditions in classical statistical simulations, JHEP 09, 206, arXiv:2206.08691 [hep-lat] .
- M. G. Alford and M. Gleiser, Metastability in two-dimensions and the effective potential, Phys. Rev. D 48, 2838 (1993), arXiv:hep-ph/9304245 .
- O. Gould and J. Hirvonen, Effective field theory approach to thermal bubble nucleation, Phys. Rev. D 104, 096015 (2021), arXiv:2108.04377 [hep-ph] .
- T. P. Billam, K. Brown, and I. G. Moss, False-vacuum decay in an ultracold spin-1 Bose gas, Phys. Rev. A 105, L041301 (2022), arXiv:2108.05740 [cond-mat.quant-gas] .
- T. P. Billam, K. Brown, and I. G. Moss, Bubble nucleation in a cold spin 1 gas, New J. Phys. 25, 043028 (2023), arXiv:2212.03621 [cond-mat.quant-gas] .
- E. A. Calzetta and B.-L. B. Hu, Nonequilibrium Quantum Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2008).
- A. Strumia and N. Tetradis, Bubble nucleation rates for radiatively induced first order phase transitions, Nucl. Phys. B 554, 697 (1999), arXiv:hep-ph/9811438 .
- G. D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63, 045002 (2001), arXiv:hep-ph/0009132 .
- M. Gleiser and R. O. Ramos, Thermal fluctuations and validity of the 1-loop effective potential, Physics Letters B 300, 271 (1993).
- J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363, 223 (2002), arXiv:hep-ph/0005122 .
- J. Berges, Nonequilibrium quantum fields: From cold atoms to cosmology (2015), arXiv:1503.02907 [hep-ph] .
- J. Berges, S. Borsanyi, and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002 (2004), arXiv:hep-ph/0403234 .
- S. Borsanyi, Nonequilibrium field theory from the 2PI effective action, PoS JHW2005, 004 (2006), arXiv:hep-ph/0512308 .
- A. H. Guth and E. J. Weinberg, Cosmological consequences of a first-order phase transition in the su5subscriptu5{\mathrm{u}}_{5}roman_u start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT grand unified model, Phys. Rev. D 23, 876 (1981).
- G. Aarts and J. Berges, Nonequilibrium time evolution of the spectral function in quantum field theory, Phys. Rev. D 64, 105010 (2001), arXiv:hep-ph/0103049 .
- J. Berges and J. Serreau, Parametric resonance in quantum field theory, Phys. Rev. Lett. 91, 111601 (2003), arXiv:hep-ph/0208070 .
- J. Berges, Controlled nonperturbative dynamics of quantum fields out-of-equilibrium, Nucl. Phys. A 699, 847 (2002b), arXiv:hep-ph/0105311 .
- S. Juchem, W. Cassing, and C. Greiner, Quantum dynamics and thermalization for out-of-equilibrium phi**4 theory, Phys. Rev. D 69, 025006 (2004), arXiv:hep-ph/0307353 .
- J. Berges and S. Borsanyi, Nonequilibrium quantum fields from first principles, Eur. Phys. J. A 29, 95 (2006), arXiv:hep-th/0512010 .
- L. Shen and A. Rothkopf, Solver for 2PI evolution equations at NLO in large N (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.