Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards 6D MCL for LiDARs in 3D TSDF Maps on Embedded Systems with GPUs (2310.04172v1)

Published 6 Oct 2023 in cs.RO

Abstract: Monte Carlo Localization is a widely used approach in the field of mobile robotics. While this problem has been well studied in the 2D case, global localization in 3D maps with six degrees of freedom has so far been too computationally demanding. Hence, no mobile robot system has yet been presented in literature that is able to solve it in real-time. The computationally most intensive step is the evaluation of the sensor model, but it also offers high parallelization potential. This work investigates the massive parallelization of the evaluation of particles in truncated signed distance fields for three-dimensional laser scanners on embedded GPUs. The implementation on the GPU is 30 times as fast and more than 50 times more energy efficient compared to a CPU implementation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. Eisoldt, J. Gaal, T. Wiemann, M. Flottmann, M. Rothmann, M. Tassemeier, and M. Porrmann, “A fully integrated system for hardware-accelerated tsdf slam with lidar sensors (hatsdf slam),” Robotics and Autonomous Systems, vol. 156, p. 104205, 2022.
  2. S. Rahn, P. Gehricke, C.-L. Petermöller, E. Neumann, P. Schlinge, L. Rabius, H. Termühlen, C. Sieh, M. Tassemeier, T. Wiemann et al., “Redrose—reconfigurable drone setup for resource-efficient slam,” in Proceedings of the DroneSE and RAPIDO: System Engineering for constrained embedded systems, 2023, pp. 20–30.
  3. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization: Efficient Position Estimation for Mobile Robots,” AAAI/IAAI, vol. 1999, no. 343-349, pp. 2–2, 1999.
  4. D. Fox, “KLD-sampling: Adaptive Particle Filters and Mobile Robot Localization,” Advances in Neural Information Processing Systems (NIPS), vol. 14, no. 1, pp. 26–32, 2001.
  5. D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An Efficient FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 1.   IEEE, 2003, pp. 206–211.
  6. G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for grid mapping with rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
  7. F. J. Perez-Grau, F. Caballero, A. Viguria, and A. Ollero, “Multi-sensor three-dimensional Monte Carlo localization for long-term aerial robot navigation,” International Journal of Advanced Robotic Systems, vol. 14, no. 5, 2017.
  8. S. Oishi, Y. Jeong, R. Kurazume, Y. Iwashita, and T. Hasegawa, “ND voxel localization using large-scale 3D environmental map and RGB-D camera,” in 2013 IEEE international conference on robotics and biomimetics (ROBIO).   IEEE, 2013, pp. 538–545.
  9. A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid Robot Localization in Complex Indoor Environments,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2010, pp. 1690–1695.
  10. R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard, “Monte Carlo Localization in Outdoor Terrains using Multi-Level Surface Maps,” Journal of Field Robotics, vol. 25, no. 6-7, pp. 346–359, 2008.
  11. M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient scene simulation for robust Monte Carlo localization using an RGB-D camera,” in 2012 IEEE international conference on robotics and automation.   IEEE, 2012, pp. 1663–1670.
  12. S. Kanai, R. Hatakeyama, and H. Date, “Improvement of 3D Monte Carlo localization using a depth camera and terrestrial laser scanner,” The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, no. 4, p. 61, 2015.
  13. A. Dhawale, K. S. Shankar, and N. Michael, “Fast Monte-Carlo Localization on Aerial Vehicles using Approximate Continuous Belief Representations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5851–5859.
  14. F. A. Rahman, R. D. H. Al-Fahsia, and I. Ardiyantoa, “GPU-Accelerated Monte Carlo Localization for Mobile Robot Soccer with Omnidirectional Camera.”
  15. M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and architectures for distributed particle filters,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp. 2442–2450, 2005.
  16. S. Liu, G. Mingas, and C.-S. Bouganis, “Parallel Resampling for Particle Filters on FPGAs,” in 2014 International Conference on Field-Programmable Technology (FPT).   IEEE, 2014, pp. 191–198.
  17. H. A. Abd El-Halym, I. I. Mahmoud, and S. Habib, “Proposed hardware architectures of particle filter for object tracking,” EURASIP Journal on Advances in Signal Processing, vol. 2012, no. 1, pp. 1–19, 2012.
  18. A. Krishna, A. van Schaik, and C. S. Thakur, “Source localization using particle filtering on FPGA for robotic navigation with imprecise binary measurement,” arXiv preprint arXiv:2010.11911, 2020.
  19. J. U. Cho, S. H. Jin, X. Dai Pham, J. W. Jeon, J. E. Byun, and H. Kang, “A Real-Time Object Tracking System Using a Particle Filter,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2006, pp. 2822–2827.
  20. S. Saha, N. K. Bambha, and S. S. Bhattacharyya, “Design and implementation of embedded computer vision systems based on particle filters,” Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1203–1214, 2010.
  21. N. Akai, T. Hirayama, and H. Murase, “3D Monte Carlo Localization with Efficient Distance Field Representation for Automated Driving in Dynamic Environments,” in 2020 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2020, pp. 1859–1866.
  22. M. Helmberger, K. Morin, B. Berner, N. Kumar, D. Wang, Y. Yue, G. Cioffi, and D. Scaramuzza, “The Hilti SLAM Challenge Dataset,” 2021.
  23. M. Eisoldt, M. Flottmann, J. Gaal, P. Buschermöhle, S. Hinderink, M. Hillmann, A. Nitschmann, P. Hoffmann, T. Wiemann, and M. Porrmann, “HATSDF SLAM–Hardware-accelerated TSDF SLAM for Reconfigurable SoCs,” in 2021 European Conference on Mobile Robots (ECMR).   IEEE, pp. 1–7.
  24. J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and evaluation benchmark for road detection algorithms,” in International Conference on Intelligent Transportation Systems (ITSC), 2013.
  25. L. Zhang, M. Helmberger, L. F. T. Fu, D. Wisth, M. Camurri, D. Scaramuzza, and M. Fallon, “Hilti-oxford dataset: A millimeter-accurate benchmark for simultaneous localization and mapping,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 408–415, 2022.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com