The Geometric Structure of Fully-Connected ReLU Layers (2310.03482v2)
Abstract: We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU layers in neural networks. The parameters of a ReLU layer induce a natural partition of the input domain, such that the ReLU layer can be significantly simplified in each sector of the partition. This leads to a geometric interpretation of a ReLU layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.