Jet-Origin Identification and Its Application at an Electron-Positron Higgs Factory (2310.03440v6)
Abstract: To enhance the scientific discovery power of high-energy collider experiments, we propose and realize the concept of jet origin identification that categorizes jets into 5 quark species $(b,c,s,u,d)$, 5 anti-quarks $(\bar{b},\bar{c},\bar{s},\bar{u},\bar{d})$, and the gluon. Using state-of-the-art algorithms and simulated $\nu\bar{\nu}H, H\rightarrow jj$ events at 240 GeV center-of-mass energy at the electron-positron Higgs factory, the jet origin identification simultaneously reaches jet flavor tagging efficiencies ranging from 67% to 92% for bottom, charm, and strange quarks, and jet charge flip rates of 7% to 24% for all quark species. We apply the jet origin identification to Higgs rare and exotic decay measurements at the nominal luminosity of the Circular Electron Positron Collider (CEPC), and conclude that the upper limits on the branching ratios of $H\rightarrow s \bar{s}, u\bar{u}, d\bar{d}$, and $H\rightarrow sb, db, uc, ds$ can be determined to $2!!\times!!10{-4}$ to $1!!\times!!10{-3}$ at 95% confidence level. The derived upper limit for $H\rightarrow s \bar{s}$ decay is approximately three times the prediction of the Standard Model.
- J. Gallicchio and M. D. Schwartz, Phys. Rev. Lett. 107, 172001 (2011), arXiv:1106.3076 [hep-ph] .
- CERN, Cern yellow reports: Monographs, vol 2 (2017): Handbook of lhc higgs cross sections: 4. deciphering the nature of the higgs sector (2017).
- R. Gauld, A. Huss, and G. Stagnitto, Phys. Rev. Lett. 130, 161901 (2023), arXiv:2208.11138 [hep-ph] .
- M. Aaboud et al. (ATLAS), Phys. Lett. B 786, 59 (2018), arXiv:1808.08238 [hep-ex] .
- A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 121801 (2018a), arXiv:1808.08242 [hep-ex] .
- A. Tumasyan et al. (CMS), Phys. Rev. Lett. 131, 061801 (2023), arXiv:2205.05550 [hep-ex] .
- E. M. Metodiev and J. Thaler, Phys. Rev. Lett. 120, 241602 (2018), arXiv:1802.00008 [hep-ph] .
- G. Aad et al. (ATLAS), Eur. Phys. J. C 81, 537 (2021), arXiv:2011.08280 [hep-ex] .
- G. Aad et al. (ATLAS), Eur. Phys. J. C 82, 717 (2022), arXiv:2201.11428 [hep-ex] .
- Z.-B. Kang, A. J. Larkoski, and J. Yang, Phys. Rev. Lett. 130, 151901 (2023), arXiv:2301.09649 [hep-ph] .
- A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 78, 701 (2018b), arXiv:1806.00863 [hep-ex] .
- ATLAS Collaboration, Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z𝑍Zitalic_Z-boson decay in the ATLAS experiment at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV, Tech. Rep. (CERN, Geneva, 2018).
- K. F. Chen et al. (Belle), Phys. Rev. Lett. 98, 031802 (2007).
- R. Aaij et al. (LHCb), Eur. Phys. J. C 79, 706 (2019), [Erratum: Eur.Phys.J.C 80, 601 (2020)], arXiv:1906.08356 [hep-ex] .
- H. T. Li, B. Yan, and C. P. Yuan, Phys. Rev. Lett. 131, 041802 (2023), arXiv:2301.07914 [hep-ph] .
- The CEPC Study Group, CEPC conceptual design report: Volume 2 - physics & detector (2018), arXiv:1811.10545 [hep-ex] .
- S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003).
- The European Strategy Group, Deliberation document on the 2020 Update of the European Strategy for Particle Physics, Tech. Rep. (Geneva, 2020).
- H. Cheng et al., The Physics potential of the CEPC. Prepared for the US Snowmass Community Planning Exercise (Snowmass 2021) (2022), arXiv:2205.08553 [hep-ph] .
- M. Ruan, Arbor, a new approach of the particle flow algorithm (2014), arXiv:1403.4784 [physics.ins-det] .
- H. Qu and L. Gouskos, Phys. Rev. D 101, 056019 (2020), arXiv:1902.08570 [hep-ph] .
- CEPC Accelerator Study Group, Snowmass2021 white paper AF3-CEPC (2022), arXiv:2203.09451 [physics.acc-ph] .
- R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- F. Herren and M. Steinhauser, Comput. Phys. Commun. 224, 333 (2018), arXiv:1703.03751 [hep-ph] .
- T. Sjöstrand, S. Mrenna, and P. Skands, Journal of High Energy Physics 2006, 026 (2006).
- P. Mora de Freitas, in International Conference on Linear Colliders (LCWS 04) (2004) pp. 441–444.
- C. Fu (CEPC Software Group), CEPC Document Server (2017).
- T. Suehara and T. Tanabe, Nucl. Instrum. Meth. A 808, 109 (2016).
- D. Yu, T. Zheng, and M. Ruan, Journal of Instrumentation 16 (06), P06013.
- F. An et al., Chin. Phys. C 43, 043002 (2019), arXiv:1810.09037 [hep-ex] .
- D. M. Asner et al., ILC Higgs White Paper (2018), arXiv:1310.0763 [hep-ph] .
- G. Bernardi et al., The Future Circular Collider: a Summary for the US 2021 Snowmass Process (2022), arXiv:2203.06520 [hep-ex] .
- M. Cepeda et al., CERN Yellow Rep. Monogr. 7, 221 (2019), arXiv:1902.00134 [hep-ph] .
- A. Albert et al., Strange quark as a probe for new physics in the higgs sector (2022), arXiv:2203.07535 [hep-ex] .
- CMS Collaboration, CERN Document Server (2023).
- D. Barducci and A. J. Helmboldt, JHEP 12, 105, arXiv:1710.06657 [hep-ph] .
- Y. Zhu, H. Cui, and M. Ruan, JHEP 11, 100, arXiv:2203.01469 [hep-ex] .
- A. L. Read, CERN Document Server https://doi.org/10.5170/CERN-2000-005.81 (2000).
- A. L. Read, J. Phys. G 28, 2693 (2002).
- J. de Blas et al., JHEP 01, 139, arXiv:1905.03764 [hep-ph] .
- M. Ilyushin, P. Mandrik, and S. Slabospitskii, Nuclear Physics B 952, 114921 (2020).
- M. Bahr et al., Eur. Phys. J. C 58, 639 (2008), arXiv:0803.0883 [hep-ph] .
- J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), arXiv:1512.01178 [hep-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.