Papers
Topics
Authors
Recent
2000 character limit reached

Magicremover: Tuning-free Text-guided Image inpainting with Diffusion Models (2310.02848v1)

Published 4 Oct 2023 in cs.CV

Abstract: Image inpainting aims to fill in the missing pixels with visually coherent and semantically plausible content. Despite the great progress brought from deep generative models, this task still suffers from i. the difficulties in large-scale realistic data collection and costly model training; and ii. the intrinsic limitations in the traditionally user-defined binary masks on objects with unclear boundaries or transparent texture. In this paper, we propose MagicRemover, a tuning-free method that leverages the powerful diffusion models for text-guided image inpainting. We introduce an attention guidance strategy to constrain the sampling process of diffusion models, enabling the erasing of instructed areas and the restoration of occluded content. We further propose a classifier optimization algorithm to facilitate the denoising stability within less sampling steps. Extensive comparisons are conducted among our MagicRemover and state-of-the-art methods including quantitative evaluation and user study, demonstrating the significant improvement of MagicRemover on high-quality image inpainting. We will release our code at https://github.com/exisas/Magicremover.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.