Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exact and soft boundary conditions in Physics-Informed Neural Networks for the Variable Coefficient Poisson equation (2310.02548v1)

Published 4 Oct 2023 in cs.LG

Abstract: Boundary conditions (BCs) are a key component in every Physics-Informed Neural Network (PINN). By defining the solution to partial differential equations (PDEs) along domain boundaries, BCs constrain the underlying boundary value problem (BVP) that a PINN tries to approximate. Without them, unique PDE solutions may not exist and finding approximations with PINNs would be a challenging, if not impossible task. This study examines how soft loss-based and exact distance function-based BC imposition approaches differ when applied in PINNs. The well known variable coefficient Poisson equation serves as the target PDE for all PINN models trained in this work. Besides comparing BC imposition approaches, the goal of this work is to also provide resources on how to implement these PINNs in practice. To this end, Keras models with Tensorflow backend as well as a Python notebook with code examples and step-by-step explanations on how to build soft/exact BC PINNs are published alongside this review.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.