The Empty Signifier Problem: Towards Clearer Paradigms for Operationalising "Alignment" in Large Language Models (2310.02457v2)
Abstract: In this paper, we address the concept of "alignment" in LLMs through the lens of post-structuralist socio-political theory, specifically examining its parallels to empty signifiers. To establish a shared vocabulary around how abstract concepts of alignment are operationalised in empirical datasets, we propose a framework that demarcates: 1) which dimensions of model behaviour are considered important, then 2) how meanings and definitions are ascribed to these dimensions, and by whom. We situate existing empirical literature and provide guidance on deciding which paradigm to follow. Through this framework, we aim to foster a culture of transparency and critical evaluation, aiding the community in navigating the complexities of aligning LLMs with human populations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.