Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Computing a Sparse Approximate Inverse on Quantum Annealing Machines (2310.02388v1)

Published 3 Oct 2023 in math.NA, cs.ET, and cs.NA

Abstract: Many engineering problems involve solving large linear systems of equations. Conjugate gradient (CG) is one of the most popular iterative methods for solving such systems. However, CG typically requires a good preconditioner to speed up convergence. One such preconditioner is the sparse approximate inverse (SPAI). In this paper, we explore the computation of an SPAI on quantum annealing machines by solving a series of quadratic unconstrained binary optimization (QUBO) problems. Numerical experiments are conducted using both well-conditioned and poorly-conditioned linear systems arising from a 2D finite difference formulation of the Poisson problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. N.I. Gould, J.A. Scott, Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Transactions on Mathematical Software (TOMS) 33(2), 10–es (2007) [3] G. Tosti Balducci, B. Chen, M. Möller, M. Gerritsma, R. De Breuker, Review and perspectives in quantum computing for partial differential equations in structural mechanics. Frontiers in Mechanical Engineering p. 75 (2022) [4] Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) G. Tosti Balducci, B. Chen, M. Möller, M. Gerritsma, R. De Breuker, Review and perspectives in quantum computing for partial differential equations in structural mechanics. Frontiers in Mechanical Engineering p. 75 (2022) [4] Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  2. ACM Transactions on Mathematical Software (TOMS) 33(2), 10–es (2007) [3] G. Tosti Balducci, B. Chen, M. Möller, M. Gerritsma, R. De Breuker, Review and perspectives in quantum computing for partial differential equations in structural mechanics. Frontiers in Mechanical Engineering p. 75 (2022) [4] Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) G. Tosti Balducci, B. Chen, M. Möller, M. Gerritsma, R. De Breuker, Review and perspectives in quantum computing for partial differential equations in structural mechanics. Frontiers in Mechanical Engineering p. 75 (2022) [4] Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  3. Frontiers in Mechanical Engineering p. 75 (2022) [4] Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) Y. Wang, J.E. Kim, K. Suresh, Opportunities and challenges of quantum computing for engineering optimization. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  4. Journal of Computing and Information Science in Engineering 23(6) (2023) [5] A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  5. Physical review letters 103(15), 150502 (2009) [6] A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  6. A. Ambainis, Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) [7] A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  7. SIAM Journal on Computing 46(6), 1920–1950 (2017) [8] X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) X. Liu, H. Xie, Z. Liu, C. Zhao, Survey on the improvement and application of HHL algorithm. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  8. Journal of Physics: Conference Series 2333(1), 012023 (2022) [9] J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  9. J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) [10] K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using grover’s search algorithm: an ibm quantum experience. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  10. arXiv preprint arXiv:1801.00778 (2017) [11] D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  11. ACM Transactions on Quantum Computing 3(2), 1–28 (2022) [12] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  12. arXiv preprint arXiv:1909.05820 (2019) [13] S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, How quantum is the d-wave machine? arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  13. arXiv preprint arXiv:1401.7087 (2014) [14] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  14. Reports on Progress in Physics 83(5), 054401 (2020) [15] S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Yarkoni, E. Raponi, T. Bäck, S. Schmitt, Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  15. Reports on Progress in Physics (2022) [16] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, Nonnegative/binary matrix factorization with a d-wave quantum annealer. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  16. PloS one 13(12), e0206653 (2018) [17] A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A. Borle, S.J. Lomonaco, in WALCOM: Algorithms and Computation: 13th International Conference, WALCOM 2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13 (Springer, 2019), pp. 289–301 [18] S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  17. S.W. Park, H. Lee, B.C. Kim, Y. Woo, K. Jun, in 2021 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2021), pp. 1363–1367 [19] R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  18. R. Conley, D. Choi, G. Medwig, E. Mroczko, D. Wan, P. Castillo, K. Yu, in Quantum Computing, Communication, and Simulation III, vol. 12446 (SPIE, 2023), pp. 53–63 [20] S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  19. S. Srivastava, V. Sundararaghavan, Box algorithm for the solution of differential equations on a quantum annealer. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  20. Physical Review A 99(5), 052355 (2019) [21] H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) H.P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach (Springer Nature, 2017) [22] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  21. M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, K. Gullapalli, State-of-the-art sparse direct solvers. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  22. Parallel algorithms in computational science and engineering pp. 3–33 (2020) [23] O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) O. Axelsson, in Sparse Matrix Techniques: Copenhagen 1976 Advanced Course Held at the Technical University of Denmark Copenhagen, August 9–12, 1976 (Springer, 2007), pp. 1–51 [24] J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  23. J.R. Shewchuk, et al. An introduction to the conjugate gradient method without the agonizing pain (1994) [25] J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  24. J.L. Nazareth, Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics 1(3), 348–353 (2009) [26] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  25. E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal on Scientific Computing 21(5), 1804–1822 (2000) [27] M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  26. M. Benzi, Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002) [28] A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  27. A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015) [29] M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M.L. Rogers, R.L. Singleton Jr, Floating-point calculations on a quantum annealer: Division and matrix inversion. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  28. Frontiers in Physics 8, 265 (2020) [30] M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) M. Zaman, K. Tanahashi, S. Tanaka, Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  29. IEEE Transactions on Computers 71(4), 838–850 (2021) [31] N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) N. Bell, L.N. Olson, J. Schroder, B. Southworth, PyAMG: Algebraic multigrid solvers in python. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  30. Journal of Open Source Software 8(87), 5495 (2023). 10.21105/joss.05495. URL https://doi.org/10.21105/joss.05495 [32] W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) W. Zuo, K. Saitou, Multi-material topology optimization using ordered simp interpolation. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  31. Structural and Multidisciplinary Optimization 55, 477–491 (2017) [33] K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  32. K. Suresh, Efficient generation of large-scale pareto-optimal topologies. Structural and Multidisciplinary Optimization 47(1), 49–61 (2013) [34] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  33. arXiv preprint arXiv:1411.4028 (2014) [35] B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  34. Physical review letters 110(25), 250504 (2013) [36] E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022) E. Pelofske, G. Hahn, H.N. Djidjev, Parallel quantum annealing. Scientific Reports 12(1), 4499 (2022)
  35. Scientific Reports 12(1), 4499 (2022)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube