Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index Forecasting (2310.02090v2)

Published 3 Oct 2023 in cs.LG and cs.NE

Abstract: Multi-step stock index forecasting is vital in finance for informed decision-making. Current forecasting methods on this task frequently produce unsatisfactory results due to the inherent data randomness and instability, thereby underscoring the demand for advanced forecasting models. Given the superiority of capsule network (CapsNet) over CNN in various forecasting and classification tasks, this study investigates the potential of integrating a 1D CapsNet with an LSTM network for multi-step stock index forecasting. To this end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet to generate high-level capsules from sequential data and a LSTM network to capture temporal dependencies. To maintain stochastic dependencies over different forecasting horizons, a multi-input multi-output (MIMO) strategy is employed. The model's performance is evaluated on real-world stock market indices, including S&P 500, DJIA, IXIC, and NYSE, and compared to baseline models, including LSTM, RNN, and CNN-LSTM, using metrics such as RMSE, MAE, MAPE, and TIC. The proposed 1D-CapsNet-LSTM model consistently outperforms baseline models in two key aspects. It exhibits significant reductions in forecasting errors compared to baseline models. Furthermore, it displays a slower rate of error increase with lengthening forecast horizons, indicating increased robustness for multi-step forecasting tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.