On Harnack inequality to the homogeneous nonlinear degenerate parabolic equations (2310.02026v3)
Abstract: In this paper, the Harnack inequality result are established for a new class of the homogeneous nonlinear degenerate parabolic equations \begin{align*} div A(t,x,u,\nabla_x u)-\partial_t \vert u\vert{p-2}u=0 \end{align*} on a bounded domain $ D \subset R{n+1}. $ Let $A(t,x,\xi,\eta)$ be measurable function on $R\times Rn\times R\times Rn\to Rn$ that satisfies the Caratheodory conditions for $ \, \text{arbitrary } \, (t,x)\in D$ and $(\xi,\eta)\in R{1}\times Rn.$ The following growth conditions are also satisfied: \begin{equation*} A(t,x,\xi,\eta)\eta\geq c_{1}\omega(t,x)\vert\eta\vert{p} \end{equation*} \begin{equation*} \vert A(t,x,\xi,\eta)\vert\leq c_{2}\omega(t,x)\vert\eta\vert{p-1},\quad p>1. \end{equation*} The exclusive Muckenhoupt condition $ \omega{\alpha} \in A_{1+{\alpha}/r} . $
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.