Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy (2310.01319v1)

Published 2 Oct 2023 in q-fin.PM

Abstract: In this paper, we present a novel trading strategy that integrates reinforcement learning methods with clustering techniques for portfolio management in multi-period trading. Specifically, we leverage the clustering method to categorize stocks into various clusters based on their financial indices. Subsequently, we utilize the algorithm Asynchronous Advantage Actor-Critic to determine the trading actions for stocks within each cluster. Finally, we employ the algorithm DDPG to generate the portfolio weight vector, which decides the amount of stocks to buy, sell, or hold according to the trading actions of different clusters. To the best of our knowledge, our approach is the first to combine clustering methods and reinforcement learning methods for portfolio management in the context of multi-period trading. Our proposed strategy is evaluated using a series of back-tests on four datasets, comprising a of 800 stocks, obtained from the Shanghai Stock Exchange and National Association of Securities Deal Automated Quotations sources. Our results demonstrate that our approach outperforms conventional portfolio management techniques, such as the Robust Median Reversion strategy, Passive Aggressive Median Reversion Strategy, and several machine learning methods, across various metrics. In our back-test experiments, our proposed strategy yields an average return of 151% over 360 trading periods with 800 stocks, compared to the highest return of 124% achieved by other techniques over identical trading periods and stocks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.