Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Local disclosure of quantum memory in non-Markovian dynamics (2310.01205v2)

Published 2 Oct 2023 in quant-ph

Abstract: Non-Markovian processes may arise in physics due to memory effects of environmental degrees of freedom. For quantum non-Markovianity, it is an ongoing debate to clarify whether such memory effects have a verifiable quantum origin, or whether they might equally be modeled by a classical memory. In this contribution, we propose a criterion to test locally for a truly quantum memory. The approach is agnostic with respect to the environment, as it solely depends on the local dynamics of the system of interest. Experimental realizations are particularly easy, as only single-time measurements on the system itself have to be performed. We study memory in a variety of physically motivated examples, both for a time-discrete case, and for time-continuous dynamics. For the latter, we are able to provide an interesting class of non-Markovian master equations with classical memory that allows for a physically measurable quantum trajectory representation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
  2. J. Preskill, Quantum 2, 79 (2018).
  3. J. Roffe, Contemporary Physics 60, 226 (2019).
  4. E. Grumbling and M. Horowitz, eds., Quantum Computing: Progress and Prospects (National Academies Press, Washington, D.C., 2019).
  5. H.-P. Breuer, Journal of Physics B: Atomic, Molecular and Optical Physics 45, 154001 (2012).
  6. M. J. W. Hall, Physical Review A 89 (2014), 10.1103/PhysRevA.89.042120.
  7. O. Oreshkov and T. A. Brun, Physical Review A 76, 022318 (2007).
  8. K. X. Wei, E. Pritchett, D. M. Zajac, D. C. McKay,  and S. Merkel, “Characterizing non-Markovian Off-Resonant Errors in Quantum Gates,”  (2023).
  9. B. Vacchini, Journal of Physics B: Atomic, Molecular and Optical Physics 45, 154007 (2012).
  10. C. Giarmatzi and F. Costa, Quantum 5, 440 (2021).
  11. P. Taranto, M. T. Quintino, M. Murao,  and S. Milz, “Characterising the Hierarchy of Multi-time Quantum Processes with Classical Memory,”  (2023).
  12. See Supplemental Material at [ … ] for details, which includes Refs. Breuer et al. (2016); Li et al. (2018); Rivas et al. (2010); Breuer et al. (2009); Lorenzo et al. (2013); Smirne et al. (2021); Breuer and Petruccione (2007); Kretschmer et al. (2016); Garraway (1997); Diósi et al. (1998); Heineken et al. (2021); Beth Ruskai et al. (2002); Ziman et al. (2005); Ziman and Bužek (2010); Hall (2014); Wiseman and Milburn (2009); Brun (2002); Diósi (2008); Wiseman and Gambetta (2008); Breuer (2004); Pellegrini and Petruccione (2009); Krönke and Strunz (2012); Smirne et al. (2020); Megier et al. (2020b); Diósi and Strunz (1997); Breuer et al. (1999); Jack et al. (1999); Piilo et al. (2008); Hartmann and Strunz (2017); Gasbarri and Ferialdi (2018); Link et al. (2022); Becker et al. (2023); Karasik and Wiseman (2011); Daryanoosh and Wiseman (2014); Beyer et al. (2018).
  13. M. Gregoratti and R. F. Werner, Journal of Modern Optics 50, 915 (2003).
  14. J. Helm and W. T. Strunz, Phys. Rev. A 81, 042314 (2010).
  15. M. B. Plenio and S. Virmani, Quantum Information & Computation 7, 1 (2007).
  16. M.-D. Choi, Linear Algebra and its Applications 10, 285 (1975).
  17. D. Chruściński and F. A. Wudarski, Physics Letters A 377, 1425 (2013).
  18. H.-P. Breuer and B. Vacchini, Physical Review Letters 101, 140402 (2008).
  19. B. Vacchini, Physical Review Letters 117, 230401 (2016).
  20. D. Chruściński and A. Kossakowski, Physical Review A 94, 020103 (2016).
  21. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  22. B. M. Garraway, Physical Review A 55, 2290 (1997).
  23. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).
  24. T. A. Brun, American Journal of Physics 70, 719 (2002).
  25. L. Diósi, Physical Review Letters 100, 080401 (2008).
  26. H. M. Wiseman and J. M. Gambetta, Physical Review Letters 101, 140401 (2008).
  27. H.-P. Breuer, Physical Review A 70, 012106 (2004).
  28. C. Pellegrini and F. Petruccione, Journal of Physics A: Mathematical and Theoretical 42, 425304 (2009).
  29. S. Krönke and W. T. Strunz, Journal of Physics A: Mathematical and Theoretical 45, 055305 (2012).
  30. L. Diósi and W. T. Strunz, Physics Letters A 235, 569 (1997).
  31. R. Hartmann and W. T. Strunz, Journal of Chemical Theory and Computation 13, 5834 (2017).
  32. G. Gasbarri and L. Ferialdi, Physical Review A 98, 042111 (2018).
  33. T. Becker, C. Netzer,  and A. Eckardt, “Quantum trajectories for time-local non-Lindblad master equations,”  (2023).
  34. R. I. Karasik and H. M. Wiseman, Physical Review Letters 106, 020406 (2011).
  35. S. Daryanoosh and H. M. Wiseman, New Journal of Physics 16, 063028 (2014).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.